Engineering Masters Programs in Biomedical devices, and technologies that address real-world clinical problems. Closely with physicians to develop and investigate new therapies, Administration Research Service. Most of our graduate students work in Radiation Oncology, Otolaryngology, and Surgery, and the Miami Veterans Nanotechnology Institute, the Departments of Pathology, Radiology, Research Institute, the University of Miami Ear Institute, Biomedical Palmer Eye Institute, the Miami Project to Cure Paralysis, the Diabetes and research centers at the School of Medicine, including the Bascom Department of Biomedical Engineering and at clinical departments Graduate students receive training and conduct research at the University of Miami School of Medicine provide a diverse interdisciplinary training experience through collaboration with clinical programs at the University of Miami School of Medicine. Areas of Research The broad areas of research in Biomedical Engineering include: • Imaging, optics and lasers, diagnostic and surgical instrumentation • Biomechanics, microfluidics, biomaterials and tissue engineering • Neural engineering, brain-computer-interfaces • Medical physics Graduate students receive training and conduct research at the Department of Biomedical Engineering and at clinical departments and research centers at the School of Medicine, including the Bascom Palmer Eye Institute, the Miami Project to Cure Paralysis, the Diabetes Research Institute, the University of Miami Ear Institute, Biomedical Nanotechnology Institute, the Departments of Pathology, Radiology, Radiation Oncology, Otolaryngology, and Surgery, and the Miami Veterans Administration Research Service. Most of our graduate students work closely with physicians to develop and investigate new therapies, devices, and technologies that address real-world clinical problems. Masters Programs in Biomedical Engineering • B.S./M.S. Five-Year Program in Biomedical Engineering (http://bulletin.miami.edu/graduate-academic-programs/engineering/biomedical-engineering/five-year-program-biomedical-engineering-bs-ms) • M.S. in Biomedical Engineering (http://bulletin.miami.edu/graduate-academic-programs/engineering/biomedical-engineering/biomedical-engineering-ms) Doctoral Program in Biomedical Engineering • Ph.D. in Biomedical Engineering (http://bulletin.miami.edu/graduate-academic-programs/engineering/biomedical-engineering/biomedical-engineering-phd) Certificate Program • Medical Physics (http://bulletin.miami.edu/graduate-academic-programs/engineering/biomedical-engineering/ms-phd-and-certificate-programs-in-medical-physics) BME 601. Unified Medical Sciences I. 3 Credit Hours. Treatment of the basic biological and medical elements in physiological systems. The anatomy, physiology, biophysics, biochemistry and certain aspects of clinical medicine are unified with an emphasis on cellular and subcellular systems. Not open to BME undergraduates. Components: LEC. Grading: GRD. Typically Offered: Fall. BME 602. Unified Medical Sciences II. 3 Credit Hours. Treatment of the basic biological and medical elements in physiological systems. The anatomy, physiology, biophysics, biochemistry, and certain aspects of clinical medicine are unified with an emphasis on cardiovascular, renal, digestive, endocrine, and reproductive systems. Not open to BME undergraduates. Components: LEC. Grading: GRD. Typically Offered: Fall. BME 603. Unified Medical Science III. 3 Credit Hours. Treatment of the basic biological and medical elements in physiological systems. The anatomy, physiology, biophysics, biochemistry, and certain aspects of clinical medicine are unified with an emphasis on neural, sensory, and muscular systems. Not open to BME undergraduates. Components: LEC. Grading: GRD. Typically Offered: Spring. BME 606. Computer Aided Design in Biomedical Engineering. 1 Credit Hour. Laboratory course for computer based two and three dimensional drawing and design based on ProEngineer. Parametric design, parts, features, assemblies for complex modeling. Applications in biomedical engineering design. Prerequisite: BME 112. And BME 211. Components: LAB. Grading: GRD. Typically Offered: Fall & Spring. BME 607. LabView Applications for Biomedical Engineering. 1 Credit Hour. Laboratory course for computer based instrumentation and design based on Labvie w. Virtual instrumentation, data acquisition and display, GPIB instrument control, biomedical applications in biosignal recording, and monitoring are discussed. Prerequisite: BME 112. And BME 211. Components: LAB. Grading: GRD. Typically Offered: Fall & Spring.
BME 610. Introduction to Medical Robotics. 3 Credit Hours.
This course will discuss the basic principles of robotics and focus on its medical applications. The course integrates previously learned math, programming and imaging knowledge into an application platform to enable students to understand fundamentals of robotics methods in biology and medicine and to train students to build a robotics prototype through hands-on projects.
Prerequisite: BME 211. And BME 310. And BME 330.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 612. Regulatory Control of Biomedical Devices. 3 Credit Hours.
Regulatory agencies and requirements, Food and Drug Administration, 510(k) and premarket approval (PMA), international regulatory requirements, ISO 9000 series, CE, UL, product and process validation, quality engineering, quality improvement programs, rapid prototyping, packaging and sterilization, and project management are discussed.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 613. Biomedical Systems Engineering. 3 Credit Hours.
This course provides students with an understanding and appreciation of Biomedical Systems Engineering with emphasis on current day industrial project management and product development processes. The components of Systems Engineering to be presented include: functional system analysis, requirements analysis, translation of functions and requirements into a system and product architecture, and, finally, testing methods to verify the biomedical product meets all design requirements. Decision methodology, alternative concept analysis, trade-off studies, integration of human factors, manufacturability, reliability, maintainability, feasibility demonstration, and safety are all addressed as part of the product design system. The entire product development life cycle will be analyzed with relevant concepts from initial market evaluation, to requirement development, through final product manufacturing and product launch. The regulatory environment for biomedical devices will also be presented for both US FDA and international compliance. The lectures will provide detailed notes on the subjects; other articles as handouts or additional readings will also be assigned.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

BME 620. Medical Imaging System. 3 Credit Hours.
Engineering and scientific principles of medical imaging systems. The concepts of instrumentation and diagnostic applications of different techniques and systems are presented. Demonstrations or exhibitions of medical systems are given in the visits to clinic and research laboratories. Topics include digital image and image processing fundamentals, radiographic (X-ray, CT), magnetic resonance (MRI) and radio-isotopic (PET) systems, and associated image reconstruction techniques. Basic concepts and simulation of imaging systems are emphasized.
Prerequisite: ECE 201. And BME 211. And BME 330. Or Corequisite: BME 470.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

BME 621. Medical Imaging Applications. 3 Credit Hours.
Medical applications of imaging systems and image processing techniques. Topics include image fundamentals (resolution, format, and storage), image processing fundamentals (transformation, compression, enhancement, segmentation, registration, and reconstruction), and image analysis fundamentals (calibration, quantification, correlation, linearity and depiction). Course includes dedicated computer laboratory projects and demonstrations given in clinical and research laboratories at the medical campus. Corequisite: BME 570 or equivalent.
Prerequisite: BME 211. And BME 330. Or Corequisite: BME 470.
Components: LEC.
Grading: GRD.

BME 622. Scanning Electron Microscopy for Engineers. 3 Credit Hours.
Physics and operating principles of scanning electron microscope (SEM), transmission electron microscope (TEM), and optical light microscope. Biological tissue preparation, storage, fixation and digital image storage. Each student will learn to use the SEM in the design and/or analysis of a biomedical device.
Components: LAB.
Grading: GRD.
Typically Offered: Spring.

BME 625. Special Problems. 1-3 Credit Hours.
Research and/or design projects consisting of an individual investigation of current problems. Offered by special arrangement only.
Components: THI.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

BME 626. Special Problems. 1-3 Credit Hours.
Research and/or design projects consisting of an individual investigation of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

BME 635. Advanced Biomaterials. 3 Credit Hours.
Applications of biomaterials in different tissue and organ systems. Relationship between physical and chemical structure of materials and biological system response are discussed as well as choosing, fabricating, and modifying materials for specific biomedical applications.
Prerequisite: BME 335.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 640. Microcomputer-Based Medical Instrumentation. 3 Credit Hours.
Principles and design of microcomputer-based biomedical instruments, analog and digital signal conversion, microcomputer hardware and software design, algorithm development for medical applications, medical signal processing with microcomputers, software safety in life support systems, and current applications are discussed.
Prerequisite: ECE 315. And ECE 304. Or ECE 211.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.
BME 641. Medical Electronic Systems Laboratory. 2 Credit Hours.
Laboratory course for BME 540. Design of medical instruments integrated with microcomputers and telemetry devices. 
Pre/Corequisite: BME 540. Or BME 640.
Components: LAB.
Grading: GRD.
Typically Offered: Spring.

BME 645. Biomedical Optical Instruments. 3 Credit Hours.
Introduction to geometrical optics, light sources, detectors, and fiber optics with an emphasis on engineering aspects and medical applications. Fiberoptic delivery systems for medical applications, optics of the eye and visual instruments, and optical instruments used in medicine (microscopes, endoscopes, ophthalmic instruments) are discussed. Hands-on sessions in the laboratory are included. 
Prerequisite: PHY 206. And PHY 207. And MTH 311.
Components: LEC.
Grading: GRD.

BME 646. Medical Applications of Lasers. 3 Credit Hours.
Review of geometrical optics, fiber optics, wave optics, laser physics, and technology. Medical laser systems, optical properties of tissue, light propagator in tissue, laser-tissue interactions, and surgical applications of lasers are also covered. Hands-on sessions in the laboratory are included. 
Prerequisite: PHY 206. And PHY 207. And MTH 311.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 655. Fundamentals of Computational Neuroscience. 3 Credit Hours.
Major concepts include neural signaling and communication from the single neuron to system of neural ensembles and the role of neural computation in engineering applications. Theory and principles of information processing in the brain are presented. Experimental data and computer simulations are used to provide real examples for students experimentation. 
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 665. Principles of Cellular and Tissue Engineering. 3 Credit Hours.
Introduction to cellular and tissue engineering. Current therapeutic approaches for lost/damaged tissue or organ function, tissue engineering strategies to replace/repair tissue or function: infusion of cells, production and delivery of tissue-inducing substances, cells placed on or within biomaterial scaffolds, examples of tissue engineering applications: skin, heart muscle, blood vessels, and blood. 
Prerequisite: BME 302. And BME 335.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

BME 666. Cell and Tissue Engineering Laboratory. 1 Credit Hour.
The principles of cell and tissue engineering will be presented in a hands-on laboratory experience. General techniques learned will include sterile methods, cell culture techniques and integration of cells within biomaterials. Cell engineering topics include cell cycle/metabolism, adhesion, signal transduction, and assessment. Tissue engineering topics include fabrication, biomaterials/scaffolds and cell integration, and functional assessment. 
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

BME 667. Tissue Engineering Lab. 1 Credit Hour.
The principles of tissue engineering will be presented in a hands-on laboratory experience. General techniques learned will include hydrogel spectroscopy analysis, swelling tests, permeability tests, rheological tests, cell culture techniques, cell imaging, cell culture in hydrogels. Cell & Tissue engineering topics include cell cycle/metabolism, adhesion, biomaterials synthesis and characterization, biocompatibility. 
Co-requisite: BME 635 or BME 665.
Components: LAB.
Grading: GRD.
Typically Offered: Fall & Spring.

BME 670. Advanced Biomedical Signal Processing. 3 Credit Hours.
This course provides an overview of advanced topics in biomedical signal processing with an emphasis on practical applications. Topics include quantitative description, analysis, on-line and real-time processing of biophysical and physiological signals (cardiovascular, neural, sensory, muscular, respiratory and other) using adaptive, learning, pattern recognition and data dimension reduction methods. 
Prerequisite: BME 470.
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

BME 671. Introduction to Biosignal Processing Lab. 1 Credit Hour.
Laboratory course in conjunction with BME 570 course. Corequisite: BME 570.
Components: LEC.
Grading: GRD.

BME 675. Biomechanics II. 3 Credit Hours.
Applications of linear and nonlinear viscoelastic concepts to the biomedical characteristics of biological tissues and structures at small and large deformations of blood flow, experimental methods of analysis, artificial organs, and life-support systems. 
Prerequisite: BME 375. And BME 310.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 681. Radiation Biology and Physics. 3 Credit Hours.
The principles, methods, and results of radiation biology with physics applications in radiation therapy will be introduced in the course. The course will focus on mechanisms of radiation and biological system interaction, biological aspects of the foundation of radiation therapy, and mathematical models for radiobiological analysis. Corequisite or pererequisite: BME 502 or permission of instructor. 
Corequisite: BME 602.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 682. Radiation Therapy Physics. 3 Credit Hours.
The principles and instrumentation of radiation dosimetry with focus on the applications in radiation therapy will be introduced in this course. The course will emphasize radiation dose computation algorithms and applications in treatment dose planning. The course will also cover a categorized dosimetric analysis of radiation therapy to different clinical conditions. 
Prerequisite: BME 310. Or Pre/Corequisite: BME 681.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.
BME 683. Radiation Protection. 3 Credit Hours.
This course covers radiation safety principles for all areas of clinical medical physics, including regulatory requirements for personnel, equipment and facilities and detailed structural shielding design requirements for medical facilities. The student will become proficient in practical aspects of radiation safety objectives and regulatory requirements in clinical practice, including those for patients, members of the general public and staff. Students will learn the principles for designing and installing structural shielding in clinical facilities that satisfies both regulatory requirements and clinical needs.
Prerequisite: BME 681. Or Pre/Corequisite: BME 682.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 687. Finite Element Analysis for Engineers. 3 Credit Hours.
Introduction to the finite-element method. Hands-on applications of FEMLAB software to the analysis of structural, thermal, chemical, electro-magnetic, optical, and fluid flow problems.
Prerequisite: MTH 311.
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

BME 699. Cooperative Education.. 1 Credit Hour.
Practical application of classroom theory through alternating semester or summer employment with firms offering positions consistent with the student's field of study. Course may be repeated. Periodic reports and conferences are required.
Components: THI.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 702. Organs on Chips. 3 Credit Hours.
This course provides a comprehensive introduction to engineering thriving and non-living components of cellular systems in a dish. The first part of the course will focus on cell source, with an emphasis on human stem cell acquisition and differentiation. The second part of the course will focus on biomaterials and methods for engineering tissues. The final portion of the course will be a survey of tissue engineering in the clinic today and existing "Organ on Chip" platforms. Throughout the course, laboratory principles will be discussed, including cell culture and gene editing. Most of the assigned reading will be recent primary literature articles.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 705. Master's Design Project I. 3 Credit Hours.
Comprehensive M.S. design project in biomedical engineering. Open to students in the BS/MS and MS programs.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

BME 706. Master's Design Project II. 3 Credit Hours.
Comprehensive M.S. design project in biomedical engineering. Open to students in the BS/MS.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

BME 711. Accelerated Basic Science Curriculum. 1-9 Credit Hours.
Beginning in the latter part of June each year, extending to the middle of February of the ensuing year, the following accelerated and intensive complete basic science medical curriculum is offered: Embryology, Gross Anatomy, Histology, Biochemistry, Neuroanatomy, Biophysics and Neurophysiology, Systematic Physiology, Pathology, Medical Microbiology, and Pharmacology. A single grade will be entered on the graduate transcript for this course. MD-PhD Students Only
Components: LEC.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.

BME 713. Application of Computers in Medicine. 3 Credit Hours.
Applications in the clinical and medical research laboratories for physiological data acquisition, analysis, and management of patient records. Differences among computer systems and languages for clinical and research activities are also covered.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 722. Scanning Electron Microscopy Special Projects. 3 Credit Hours.
An advanced course for graduate students with basic skills in SEM. Course is open only to masters or Ph.D. students. Students will have an opportunity to do independent research under supervision of the instructor on special projects of interest that may be related to their field of study as long as it is not part of their thesis or dissertation.
Prerequisite: BME 522 Or BME 622.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

BME 723. Neurosensory Engineering. 3 Credit Hours.
Biophysics of neural communication, quantitative electroencephalography and evoked potentials, sleep, seizure, anesthesia and intraoperative monitoring, neural stimulation, artificial and biological neural networks, cochlear and visual implants, brain and muscle stimulation.
Prerequisite: BME 603. And BME 570. Or BME 670.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 724. Neuromotor Engineering. 3 Credit Hours.
Advances in Neural Engineering have led to improved medical-device designs with novel functions. This course focuses on the engineering approaches, R&D advances, and the technical principles of NeuroMotor medical implants. Neural Engineering theory and applications from the perspectives of electronics design, neural signal analysis, and neurophysiology will be covered.
Prerequisite: BME 603.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 725. Special Problems. 1-3 Credit Hours.
Research and/or design projects through an individual investigation of current problems. Offered by special arrangement only.
Components: THI.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.
BME 726. Special Problems. 1-3 Credit Hours.
Research and/or design projects through an individual investigation of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

BME 728. Advanced Topics. 1-3 Credit Hours.
Subject matter offerings based upon student demand and availability of faculty. Subtitles describing the topics to be offered will be shown in parentheses in the printed class schedule, following the title "Advanced Topics".
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

BME 729. Advanced Medical Imaging. 3 Credit Hours.
Analysis of contemporary medical imaging systems and the associated technologies. The course focuses on principles of advanced medical imaging systems. Topics include multimodality imaging, three-dimensional image reconstruction and visualization, clinical and research applications, and derivation and comparison of algorithms.
Prerequisite: BME 620.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 731. Advanced Topics. 1-3 Credit Hours.
Subject matter offerings based upon student demand and availability of faculty. Subtitles describing the topics to be offered will be shown in parentheses in the printed class schedule, following the title "Advanced Topics".
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

BME 732. Advanced Topics. 1-3 Credit Hours.
Subject matter offerings based upon student demand and availability of faculty. Subtitles describing the topics to be offered will be shown in parentheses in the printed class schedule, following the title "Advanced Topics".
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

BME 735. Auditory and Visual Neural Systems. 3 Credit Hours.
Design and application of auditory and visual neural systems and devices for medical purposes. Methodologies and instrumentation using electrophysiological, psychophysical and other measurements are explored focusing on diagnostic and therapeutic applications.
Prerequisite: BME 603.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 740. Implantable Biomedical Devices. 3 Credit Hours.
Development and advances in implantable materials and devices especially those used as electrically driven protheses. Topics include pacemakers, defibrillators, catheters, neurological stimulators, heart assist, bone repair, and other diagnostic and therapeutic devices. The historical, medical significance, business, economic, and technical aspects of these devices and the associated instruments for monitoring are discussed. Fundamentals of electrochemical corrosion and stimulation as well the technology of implantable power sources are reviewed.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 745. Biomedical Optical Imaging and Diagnostics. 3 Credit Hours.
Review of geometrical optics, fiber optics, and tissue optics. Introduction to physical optics: interference, diffraction, and polarization; optical imaging resolution limits, super-resolution imaging, advanced optical microscopy, and optical coherence tomography (OCT). Imaging through scattering tissue, imaging and diagnostics with polarized light, fluorescence, infrared, and Raman spectroscopy and applications are also discussed. Optical diagnostics using scattered light: laser Doppler flowmetry, and dynamic light scattering; and opto-chemical and evanescent wave sensors are also covered.
Prerequisite: BME 310.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 760. Stem Cell-Based Tissue Engineering. 3 Credit Hours.
Principles and advanced topics on cellular and tissue engineering. Topics include biodegradable and non-biodegradable biomaterials, cytokines, the traditional and stem cell-based tissue engineering approaches, bioreactors and special topics such as bone, cartilage and other tissues.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 761. Stem Cell Design. 3 Credit Hours.
Stem cell engineering is a relatively new field of research that focuses on using stem cells and tissue derived products to repair damaged or diseased tissues. This course will examine through the most recent publications the role of stem cells and tissue derived donors for tissue repair, wound healing, and as well as regeneration/repair. In addition, we will highlight the use of engineered products developed from tissue banks associated with the different type of cells for clinical application. The course will use a mix of lectures/article presentations and discussion format to effectively present relevant information.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

BME 779. Biomedical Engineering Seminar Series. 1 Credit Hour.
A course for Biomedical Engineering doctoral students. Students will attend lectures and roundtable discussions with leading experts from both academia and industry.
Components: SEM.
Grading: SUS.
Typically Offered: Fall & Spring.
BME 780. Graduate Scholarship in Biomedical Engineering. 3 Credit Hours.
A course for Biomedical Engineering doctoral students. Students will learn to critically review scientific journal articles as well as NIH research proposals (i.e. R01, R03, F30/31 and R21). Students will also learn how to read federal grant application guidelines and determine what is required for a highly competitive written application. The students will have the opportunity to prepare their own research proposal in the form of an F31 NIH application on a biomedical engineering topic of interest. Students will also learn how to prepare and present their research findings at conferences.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

BME 781. Radiation Dosimetry and Physics. 3 Credit Hours.
Application of radiation physics in the field of radiation therapy. The course will cover the relevant subjects of modern physics, the basic modalities and basic instrumentations of radiation therapy, the principles of particle transport and radiation dose computation and quality assurance of radiation therapy instruments. The subject of radiation protection will also be discussed.
Prerequisite: BME 582. Or BME 682.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 783. Radiation Therapy Physics Clinical Rotation. 3 Credit Hours.
Students will observe clinical activities at a designated radiation therapy center for ten hours per week. Rotation includes observation of daily treatment, simulation, dose planning, physics quality assurance and routine physics support activities (special physics consultation, weekly physics chart check, monitoring radiation safety activities, support of brachytherapy procedures). Students will meet with the course instructor one and a half hours/week to discuss the schedule and the progress of the rotation activities. Students need to submit reports on each radiation therapy category.
Prerequisite: BME 682. And BME 781.
Components: THI.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 784. Medical Physics Journal Club. 1 Credit Hour.
The course aims to keep track of recent developments in the field of Medical Physics for therapeutic and diagnostic purposes in oncology through reading, discussion and presentation of identified scientific papers from the major journals of Medical Physics among enrolled students.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

BME 820. Research in Residence. 1 Credit Hour.
Used to establish research in residence for the thesis for the master’s degree after the student has enrolled for the permissible cumulative total in BME 710 (usually six credits). Credit not granted. May be regarded as full time residence.
Components: THI.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

BME 825. Continuous Registration—Master’s Study. 1 Credit Hour.
To establish residence for non-thesis master’s students who are preparing for major examinations. Credit not granted. Regarded as full time residence.
Components: THI.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

BME 830. Pre-candidacy Doctoral Dissertation. 1-12 Credit Hours.
Doctoral dissertation credits taken prior to Ph.D. student’s candidacy. The student will enroll for credit as determined by his/her advisor. Not more than 12 hours of BME 730 may be taken in a regular semester, nor more than six in a summer session.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.

Doctoral dissertation credits taken after Ph.D. student has been admitted to candidacy. The student will enroll for credit as determined by his/her advisor. Not more than 12 credits in BME 740 may be taken in a regular semester, nor more than six credits in a summer session.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.

BME 850. Research in Residence. 1 Credit Hour.
Used to establish research in residence for the Ph.D. student who has been enrolled for the permissible cumulative total in appropriate doctoral research. Credit not granted. May be regarded as full-time residence as determined by the Dean of the Graduate School.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.