B.S./M.S. FIVE-YEAR PROGRAM IN BIOMEDICAL ENGINEERING

Overview

The Department of Biomedical Engineering offers a dual-degree program that culminates with students receiving both Bachelor of Science and Master of Science (BS/MS) in Biomedical Engineering concurrently. This program is available only to qualified students enrolled in the undergraduate program in Biomedical Engineering at the University of Miami. This program is intended to give qualified Biomedical Engineering students the opportunity to acquire both a baccalaureate degree (BSBE) and a Master of Science (MSBE) degree in five years rather than the 4 plus 2 years (approximately) that is traditionally expected. The two degrees are awarded simultaneously when the combined requirements have been met for both degrees.

- Juniors from any of the four BME Concentrations who have maintained at least a 3.0 CGPA have the option to apply for admission to the combined BS-MS in Biomedical Engineering program.
- Those who are accepted into this accelerated program must maintain at least a 3.0 CGPA and a minimum of a 3.0 GPA for the final 30 credit hours to meet the requirements of the Graduate School.
- The participants complete BME 705 (http://bulletin.miami.edu/search/?P=BME%20705/) in lieu of BME 402 (http://bulletin.miami.edu/search/?P=BME%20402/BME%20403).
- Up to 6 credit hours of Technical electives earned during the fourth year can be counted toward the 30 credit hours required for the MS degree. If their schedule allows, students may be able to complete an additional 3 credits of graduate classes during their fourth year.
- Students must be registered for a minimum of 12 undergraduate credit hours per semester in their fourth year.
- Students can register for a maximum of 6 graduate credit hours in each semester of their fourth year.
- If a student needs to withdraw from the BS/MS BME program then all the requirements for the specific BS BME Concentration must be completed for graduation with the BS BME degree.

Admission Requirements

The dual BS/MS program is available only to qualified undergraduate students enrolled in the Department of Biomedical Engineering, in any of the four Concentrations (Electrical, Mechanical, Biomaterials and Tissue, PreMed). Typically, students must have undergraduate student status and a cumulative G.P.A. of at least 3.0 at the time of application.

Undergraduate students must take the Graduate Record Examination (GRE) before the end of their classification as a senior and attain a combined score of more than 300 on the verbal and quantitative portions. Students must meet all other pertinent graduate school and College of Engineering requirements.

Qualified students must apply prior to the beginning of final exams in the second semester of their junior year. Students are strongly advised to apply to the BS/MS program as early as possible in their junior year to facilitate academic advising and course selection in the second semester of their junior year. Before submitting an application, interested students should discuss the program and the possibility of entering the program with an academic advisor.

The College of Engineering Office of Admission will carefully review academic credentials for admission into the program and will notify students of their acceptance into the program. All admitted students will have a special advising appointment with Dr. Narasimhan, Assistant Dean for Undergraduate Studies, to discuss academic issues specific to the BS/MS program.

Curriculum Guidelines

In the dual-degree BS/MS program in the Department of Biomedical Engineering, the first four years of the curriculum are altered as follows:

- The 3 credits of Senior Design Project (BME 402/BME 403) are eliminated.
- In Semester I of the senior year, one 3-credit Undergraduate Technical Elective is replaced with BME 705 (MS Design Project I).
- In Semester II of the senior year, one 3-credit Undergraduate Technical Elective is replaced with one 3-credit Graduate Technical Elective.

Graduate Technical Electives taken in the senior year must be chosen from the BME graduate course offerings, with the approval of their academic advisor. The credits of Graduate Technical Electives completed in the fourth year are counted toward the 30 credits required for the MS degree.

Students admitted in the dual degree BS/MS program can take a maximum of six (6) graduate credits per semester in their senior year, for a maximum of twelve (12) graduate credits per year, without incurring additional costs if they are full-time undergraduate students during this period. Students should register for courses towards their graduate degree as "G" credits and not as "U" credits. These registrations must be completed prior to taking courses. Retroactive add/drops will not be processed.

To register for graduate credits during their senior year, students must be in senior status and must complete and submit the Graduate School's "Application for Undergraduates to Take Graduate Coursework (http://bulletin.miami.edu/programadmin/373/"
undergrad_take_grad_course.pdf” form. This form must accompany the Add/Drop and/or Course Request form to ensure that students are registered with the correct registration status.

In the Senior year, students must be registered for a minimum of 12 undergraduate credits each semester to maintain full-time status as an undergraduate student. After completing the senior year, students must register as graduate students.

BS/MS Design Project (BME 705/706)

In lieu of the 3-credit senior design project (BME 402/BME 403) students enrolled in the dual-degree BS/MS program register for 6 credits of Master Design Project (BME 705/BME 706). The 3 credits of BME 705 satisfy the undergraduate senior design requirements, in which students complete a year-long capstone design project that follows the same guidelines and format as BME 402/BME 403. Students enroll in BME 705 during the first semester of their senior year and receive their final project grade at the end of their senior year. The 3 credits of BME 706 satisfy the non-thesis Master’s project requirement. Students enroll in BME 706 during the first semester of their fifth year. The BME 706 project can be a continuation of the student’s BME 705 project, or an entirely new project. The format and guidelines for BME 706 are described in the MS section of the bulletin.

Graduation Requirements

Students accepted into the dual degree program must maintain at least a 3.0 Cumulative GPA, and meet all other pertinent Graduate School requirements, including a minimum of 3.0 GPA in the credits applied toward the MS degree.

Curriculum Requirements

BSBE/MSBE (Biomaterials and Tissue Concentration)

Students in the BSBE Biomaterials and Tissue concentration are required to complete the following courses for the dual degree:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 111</td>
<td>Introduction to Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 302</td>
<td>Cellular Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 303</td>
<td>Cell Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>BME 310</td>
<td>Mathematical Analysis in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 401</td>
<td>Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>BME 450</td>
<td>Biomedical Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>BME 470</td>
<td>Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 480</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 512</td>
<td>Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BME 535</td>
<td>Advanced Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 565</td>
<td>Principles of Cellular and Tissue Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 567</td>
<td>Tissue Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>Math and Science Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHM 121</td>
<td>Principles of Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHM 205</td>
<td>Chemical Dynamics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHM 221</td>
<td>Introduction to Structure and Dynamics</td>
<td>4</td>
</tr>
</tbody>
</table>
MTH 151
Calculus I for Engineers
5

MTH 162
Calculus II
4

MTH 311
Introduction to Ordinary Differential Equations
3

PHY 221
University Physics I
3

PHY 222
University Physics II
3

PHY 223
University Physics III
3

PHY 224
University Physics II Lab
1

PHY 225
University Physics III Lab
1

Additional Requirements
ENG 105
English Composition I
3

ENG 107
English Composition II: Science and Technology
3

Arts and Humanities Cognate
9

People and Society Cognate
9

MSBE REQUIREMENTS
BME 705
Senior Design Project
3

Graduate Technical Electives
27

BME 706
Master's Project
3

Total Credit Hours
155

Curriculum Requirements
BSBE/MSBE (Electrical Concentration)

Students in the BSBE Electrical concentration are required to complete the following courses for the dual degree:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSBE REQUIREMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 111</td>
<td>Introduction to Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 310</td>
<td>Mathematical Analysis in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 401</td>
<td>Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>BME 450</td>
<td>Biomedical Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>BME 470</td>
<td>Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 480</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 507</td>
<td>LabView Applications for Biomedical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>BME 512</td>
<td>Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BME 540</td>
<td>Microcomputer-Based Medical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 541</td>
<td>Medical Electronic Systems Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>ECE 202</td>
<td>Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 203</td>
<td>Electrical Circuits Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ECE 211</td>
<td>Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>ECE 315</td>
<td>Digital Design Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>Technical Elective Lab</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math and Science Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHM 121</td>
<td>Principles of Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>MTH 151</td>
<td>Calculus I for Engineers</td>
<td>5</td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHY 221</td>
<td>University Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 222</td>
<td>University Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 223</td>
<td>University Physics III</td>
<td>3</td>
</tr>
<tr>
<td>PHY 224</td>
<td>University Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHY 225</td>
<td>University Physics III Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 105</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENG 107</td>
<td>English Composition II: Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>Arts and Humanities Cognate: 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>People and Society Cognate: 9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MSBE REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 705</td>
<td>Senior Design Project</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Technical Electives: 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 706</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours 154

Curriculum Requirements

BSBE/MSBE (Mechanical Concentration)

Students in the BSBE Mechanical concentration are required to complete the following courses for the dual degree:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 111</td>
<td>Introduction to Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 310</td>
<td>Mathematical Analysis in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 401</td>
<td>Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>BME 450</td>
<td>Biomedical Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>BME 460</td>
<td>Introduction to Physiological Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 470</td>
<td>Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 480</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 506</td>
<td>Computer Aided Design in Biomedical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>BME 512</td>
<td>Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BME 575</td>
<td>Tissue Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>CAE 210</td>
<td>Mechanics of Solids I</td>
<td>3</td>
</tr>
<tr>
<td>MAE 202</td>
<td>Dynamics</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective Lab</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Math and Science Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHM 121</td>
<td>Principles of Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>MTH 151</td>
<td>Calculus I for Engineers</td>
<td>5</td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHY 221</td>
<td>University Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 222</td>
<td>University Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 223</td>
<td>University Physics III</td>
<td>3</td>
</tr>
<tr>
<td>PHY 224</td>
<td>University Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHY 225</td>
<td>University Physics III Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 105</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENG 107</td>
<td>English Composition II: Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>Arts and Humanities Cognate</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>People and Society Cognate</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

MSBE REQUIREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 705</td>
<td>Senior Design Project</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Technical Electives</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>BME 706</td>
<td>Master's Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 153

Curriculum Requirements

BSBE/MSBE (Pre-Med Concentration)

Students in the BSBE Pre-Med concentration are required to complete the following courses for the dual degree:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 111</td>
<td>Introduction to Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 303</td>
<td>Cell Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomedical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 401</td>
<td>Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>BME 450</td>
<td>Biomedical Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>BME 470</td>
<td>Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 480</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 512</td>
<td>Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Bioscience Elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Technical Elective Lab</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Technical or Science Lab Elective</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Math and Science Courses
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIL 160</td>
<td>Evolution and Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>BIL 161</td>
<td>Evolution and Biodiversity Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CHM 121</td>
<td>Principles of Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHM 205</td>
<td>Chemical Dynamics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHM 221</td>
<td>Introduction to Structure and Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>MTH 151</td>
<td>Calculus I for Engineers</td>
<td>5</td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHY 221</td>
<td>University Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PHY 222</td>
<td>University Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 223</td>
<td>University Physics III</td>
<td>3</td>
</tr>
<tr>
<td>PHY 224</td>
<td>University Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>PHY 225</td>
<td>University Physics III Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional Requirements

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 105</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>ENG 107</td>
<td>English Composition II: Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>Arts and Humanities Cognate</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>People and Society Cognate</td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

MSBE REQUIREMENTS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 705</td>
<td>Senior Design Project</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Technical Electives</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Credit Hours: 155

Suggested Plan of Study

Biomaterials and Tissue Concentration

Freshman Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 111</td>
<td>Introduction to Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>ENG 105</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MTH 151</td>
<td>Calculus I for Engineers</td>
<td>5</td>
</tr>
<tr>
<td>PHY 221</td>
<td>University Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHM 121</td>
<td>Principles of Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ENG 107</td>
<td>English Composition II: Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 222</td>
<td>University Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 224</td>
<td>University Physics II Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Sophomore Year

Fall

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 302</td>
<td>Cellular Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>BME 303</td>
<td>Cell Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>PHY 223</td>
<td>University Physics III</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHM 221</td>
<td>Introduction to Structure and Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>CHM 205</td>
<td>Chemical Dynamics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 310</td>
<td>Mathematical Analysis in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHY 225</td>
<td>University Physics III Lab</td>
<td>1</td>
</tr>
</tbody>
</table>

Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 401</td>
<td>Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>BME 450</td>
<td>Biomedical Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>BME 470</td>
<td>Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>BME 565</td>
<td>Principles of Cellular and Tissue Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 567</td>
<td>Tissue Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BME 705</td>
<td>Senior Design Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 480</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 512</td>
<td>Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BME 535</td>
<td>Advanced Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Fifth Year (Graduate)

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

Credit Hours

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
</tbody>
</table>
Suggested Plan of Study

Electrical Concentration

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>BME 111</td>
<td>3</td>
</tr>
<tr>
<td>ENG 105</td>
<td>3</td>
</tr>
<tr>
<td>MTH 151</td>
<td>5</td>
</tr>
<tr>
<td>PHY 221</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BME 112</td>
<td>2</td>
</tr>
<tr>
<td>CHM 121</td>
<td>4</td>
</tr>
<tr>
<td>CHM 113</td>
<td>1</td>
</tr>
<tr>
<td>ENG 107</td>
<td>3</td>
</tr>
<tr>
<td>MTH 162</td>
<td>4</td>
</tr>
<tr>
<td>PHY 222</td>
<td>3</td>
</tr>
<tr>
<td>PHY 224</td>
<td>1</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>BIL 150</td>
<td>4</td>
</tr>
<tr>
<td>BIL 151</td>
<td>1</td>
</tr>
<tr>
<td>ECE 201</td>
<td>3</td>
</tr>
<tr>
<td>MTH 311</td>
<td>3</td>
</tr>
<tr>
<td>PHY 223</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BME 211</td>
<td>3</td>
</tr>
<tr>
<td>BME 265</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>1</td>
</tr>
<tr>
<td>BME 310</td>
<td>3</td>
</tr>
<tr>
<td>ECE 203</td>
<td>1</td>
</tr>
<tr>
<td>PHY 225</td>
<td>1</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

1. PS/HA Cognate: Students must complete a minimum of 1 People & Society (PS) cognate and 1 Humanities & Arts (HA) cognate, to be selected from the list of available cognates (http://www.miami.edu/index.php/registrar/cognates/). Each cognate should be a minimum of 3 courses (9 credit hours).

2. All Technical Electives are taken as graduate courses. They are graduate-level courses (600 level and above) chosen from the BME course offerings with the approval of the advisor. Non-BME courses need to be approved by the advisor and the chairperson.
<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BME 312 Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 375 Fundamentals of Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 450 Biomedical Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>ECE 202 Electronics I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 211 Logic Design</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BME 330 Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 335 Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 401 Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>BME 440 Biomedical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>ECE 315 Digital Design Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BME 470 Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 507 LabView Applications for Biomedical Engineering</td>
<td>1</td>
</tr>
<tr>
<td>BME 512 Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>3</td>
</tr>
<tr>
<td>BME 705 Senior Design Project</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BME 480 Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 540 Microcomputer-Based Medical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 541 Medical Electronic Systems Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Technical Elective Lab</td>
<td>1</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>18</td>
</tr>
<tr>
<td>Fifth Year (Graduate)</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BME 706 Master’s Project</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>9</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>12</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>154</td>
</tr>
</tbody>
</table>

1 PS/HA Cognate: Students must complete a minimum of 1 People & Society (PS) cognate and 1 Humanities & Arts (HA) cognate, to be selected from the list of available cognates (http://www.miami.edu/index.php/registrar/cognates/). Each cognate should be a minimum of 3 courses (9 credit hours).

2 Technical Electives are chosen from BME course offerings (300 level & above) with the approval of the advisor. Any other course selected needs to be approved by the advisor and the department chairperson.
Suggested Plan of Study

Mechanical Concentration

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>BME 111</td>
<td>Introduction to Engineering I</td>
</tr>
<tr>
<td>ENG 105</td>
<td>English Composition I</td>
</tr>
<tr>
<td>MTH 151</td>
<td>Calculus I for Engineers</td>
</tr>
<tr>
<td>PHY 221</td>
<td>University Physics I</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
</tr>
<tr>
<td>CHM 121</td>
<td>Principles of Chemistry</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
</tr>
<tr>
<td>ENG 107</td>
<td>English Composition II: Science and Technology</td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
</tr>
<tr>
<td>PHY 222</td>
<td>University Physics II</td>
</tr>
<tr>
<td>PHY 224</td>
<td>University Physics II Lab</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory</td>
</tr>
<tr>
<td>CAE 210</td>
<td>Mechanics of Solids I</td>
</tr>
<tr>
<td>PHY 223</td>
<td>University Physics III</td>
</tr>
<tr>
<td>PHY 225</td>
<td>University Physics III Lab</td>
</tr>
<tr>
<td>ECE 203 or BME 303</td>
<td>Electrical Circuits Laboratory or Cell Engineering Lab</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BME 310</td>
<td>Mathematical Analysis in Biomedical Engineering</td>
</tr>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
</tr>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
</tr>
<tr>
<td>MAE 202</td>
<td>Dynamics</td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
</tr>
</tbody>
</table>
Suggested Plan of Study

Pre-Med Concentration

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>BME 111</td>
<td>3</td>
</tr>
<tr>
<td>ENG 105</td>
<td>3</td>
</tr>
<tr>
<td>MTH 151</td>
<td>5</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomechanics 3</td>
</tr>
<tr>
<td>BME 401</td>
<td>Biomedical Design 3</td>
</tr>
<tr>
<td>BME 460</td>
<td>Introduction to Physiological Fluid Mechanics 3</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior Year

Fall

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 480</td>
</tr>
<tr>
<td>BME 506</td>
</tr>
<tr>
<td>BME 575</td>
</tr>
<tr>
<td>Technical Elective Lab 3</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
</tr>
<tr>
<td>BME 705</td>
</tr>
<tr>
<td>Graduate Technical Elective 4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 450</td>
</tr>
<tr>
<td>BME 470</td>
</tr>
<tr>
<td>BME 512</td>
</tr>
<tr>
<td>PS/HA Cognate 1</td>
</tr>
<tr>
<td>Graduate Technical Elective 4</td>
</tr>
<tr>
<td>Graduate Technical Elective 4</td>
</tr>
</tbody>
</table>

Fifth Year (Graduate)

Fall

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 706</td>
</tr>
<tr>
<td>Graduate Technical Elective 4</td>
</tr>
<tr>
<td>Graduate Technical Elective 4</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Technical Elective 4</td>
</tr>
<tr>
<td>Graduate Technical Elective 4</td>
</tr>
<tr>
<td>Graduate Technical Elective 4</td>
</tr>
</tbody>
</table>

Total Credit Hours

<table>
<thead>
<tr>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
</tr>
</tbody>
</table>

1. **PS/HA Cognate**: Students must complete a minimum of 1 People & Society (PS) cognate and 1 Humanities & Arts (HA) cognate, to be selected from the list of available cognates (http://www.miami.edu/index.php/registrar/cognates/). Each cognate should be a minimum of 3 courses (9 credit hours).

2. Technical Electives are chosen from the BME course offerings (300 level and above) with the approval of the advisor. Any other courses selected need to be approved by the advisor and the department chairperson.

3. Technical Elective Lab is selected from BME 303, BME 395, BME 506, BME 507 or BME 567.

4. All Technical Electives are taken as graduate courses. They are graduate-level courses (600 level and above) chosen from the BME course offerings with the approval of the advisor. Non-BME courses need to be approved by the advisor and the chairperson.
<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 221</td>
<td>University Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHM 121</td>
<td>Principles of Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ENG 107</td>
<td>English Composition II: Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 222</td>
<td>University Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 224</td>
<td>University Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>Sophomore Year</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>CHM 221</td>
<td>Introduction to Structure and Dynamics</td>
<td>4</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>BIL 160</td>
<td>Evolution and Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>BIL 161</td>
<td>Evolution and Biodiversity Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PHY 223</td>
<td>University Physics III</td>
<td>3</td>
</tr>
<tr>
<td>CHM 205</td>
<td>Chemical Dynamics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHM 222</td>
<td>Organic Reactions and Synthesis</td>
<td>4</td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 303</td>
<td>Cell Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>BME 310</td>
<td>Mathematical Analysis in Biomedical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>PHY 225</td>
<td>University Physics III Lab</td>
<td>1</td>
</tr>
<tr>
<td>CHM 206</td>
<td>Organic Reactions and Synthesis Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BMB 401</td>
<td>Biochemistry for the Biomedical Sciences</td>
<td>4</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 401</td>
<td>Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 470</td>
<td>Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 512</td>
<td>Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>Course</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Technical Elective Lab</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 705 Senior Design Project</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>BME 450 Biomedical Transport Phenomena</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>BME 480 Biomedical Instrumentation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Credit Hours</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 705</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Credit Hours</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Fifth Year (Graduate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 706 Master’s Project</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Credit Hours</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Technical Elective</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Credit Hours</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

1. PS/HA Cognate: Students must complete a minimum of 1 People & Society (PS) cognate and 1 Humanities & Arts (HA) cognate, to be selected from the list of available cognates (http://www.miami.edu/index.php/registrar/cognates/). Each cognate should be a minimum of 3 courses (9 credit hours). Students in the Pre-Med concentration are highly encouraged to choose cognates that include PSY 110 and SOC 101.

2. All Technical Electives are taken as graduate courses. They are graduate-level courses (600 level and above) chosen from the BME course offerings with the approval of the advisor. Non-BME courses need to be approved by the advisor and the chairperson.

3. Technical Lab Elective is selected from BME 395, BME 506, BME 507, or BME 567.

4. Can be replaced with an Advanced Bioscience Elective chosen from BIL 250, BIL 255, BIL 268, CHM 222 or BMB 401. Note that CHM 222 is a pre-requisite for BMB 401. Students should verify admission requirements of their medical school of interest to verify Adv. Bioscience requirements, e.g. organic chemistry II, biochemistry, or both.

5. Can be replaced with a science lab that complements the Advanced Bioscience Elective, see footnote 4 (e.g., CHM or BIL lab).

† Students planning on taking the MCAT should take BMB 401 (http://bulletin.miami.edu/search/?P=BMB%20401/) as their first Adv. Bioscience Elective.