The Department of Electrical and Computer Engineering offers graduate programs leading to the degrees of Master of Science (thesis or non-thesis option) and Doctor of Philosophy in Electrical and Computer Engineering. Five-year BS and MS dual degree programs are available for qualified undergraduate students enrolled within the Department.

Current research interests of the faculty include:

- Statistical signal processing.
- Image and video processing, pattern recognition, computer vision, automation of visual tasks.
- Machine learning and big data analytics.
- Bioinformatics, computational biology, and genomics.
- Nano-photonics, plasmonics, micro/nano-electronic devices, nano-materials and structures.
- Fusion and learning in networks.
- Data mining, multimedia information systems, multimedia networking and security.
- Intelligent sensor microchips and MEMS, BioMEMS, implantable medical devices, VLSI, ASICs, system-on-a-chip, FPGAs.
- Integrated optics, holography, lithography, spectral imaging, optical coherence tomography.
- Game theory, multi-agent systems.

Master of Science in Electrical and Computer Engineering (MSECE)

Must complete either a thesis option (consisting 24 course credits + 06 thesis credits) or a non-thesis option (30 course credits). Thesis option requirements include the submission and oral defense of a thesis supervised by a Research Supervisor.

Doctor of Philosophy (PhD)

Must complete 30 credits (18 course credits + 12 dissertation credits). Requirements include successful completion of a Qualifying Examination, an oral defense of a research proposal, and submission and oral defense of a dissertation supervised by a Research Supervisor. An MS degree in Electrical and/or Computer Engineering, or related area, is required for students pursuing a PhD degree.

Masters Programs in Electrical and Computer Engineering

- M.S. in Electrical and Computer Engineering (http://bulletin.miami.edu/graduate-academic-programs/engineering/electrical-computer-engineering/electrical-computer-engineering-ms)
- Five-Year B.S.E.E.-M.S.E.C.E. Dual Degree - Electrical Engineering Option (http://bulletin.miami.edu/undergraduate-academic-programs/engineering/electrical-computer-engineering/five-year-bssee-mseece-dual-degree-electrical-engineering-option)
- Five-Year B.S.E.E.-M.S.E.C.E. Dual Degree - Audio Engineering Option (http://bulletin.miami.edu/undergraduate-academic-programs/electrical-computer-engineering/five-year-bssee-mseece-dual-degree-audio-engineering-option)
- Five-Year B.S.Cp.E.-M.S.E.C.E. Dual Degree - Computer Engineering Option (http://bulletin.miami.edu/undergraduate-academic-programs/engineering/electrical-computer-engineering/five-year-bsce-mseece-dual-degree-computer-engineering-option)

Doctoral Program in Electrical and Computer Engineering

- Ph.D. in Electrical and Computer Engineering (http://bulletin.miami.edu/graduate-academic-programs/engineering/electrical-computer-engineering/electrical-computer-engineering-phd)

ECE 600. Engineering Analytical Techniques. 3 Credit Hours.
Complex variables, analytic functions, power series, residue theorem, conformal mappings, series solution, Bessel functions, Legendre polynomials. singular value decomposition, vector, and matrix norms are discussed.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 602. Engineering Acoustics. 3 Credit Hours.
Introduction to basic principles of acoustics, methods of sound measurement, physiological, psychological acoustics, the acoustics of the major classes of musical instruments and speech, fundamentals of transducers, architectural acoustics, and the effects and control of noise are covered.
Prerequisite: ECE 336.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

ECE 603. Laser Communications. 3 Credit Hours.
Prerequisites: PHY 206, PHY 207, ECE 301, or Permission of Instructor.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

ECE 604. Fundamentals of Optical. 3 Credit Hours.
Prerequisites: ECE 301 or BME 545.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 605. Semiconductor Photonic Devices. 3 Credit Hours.
Principles of semiconductor electronics: energy bands of semiconductors; Fermi level/carry distribution and transport mechanisms. Application of semiconductor theory to various junction and field effect devices.
Prerequisite: ECE 302, 306, 405.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.
ECE 606. Microfabrication. 3 Credit Hours.
Principles of operation, properties and applications of semiconductor devices, junction, metal-semiconductor, metal-oxide-semiconductor, optoelectronic, bulk-effect, and charge-coupled are covered
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 632. VLSI Systems. 3 Credit Hours.
Fundamentals of MOS Technology in VLSI. System data, control flow, structures, design, layout, maskmaking, fabrication, packaging, and testing of VLSI chips are discussed. Highly concurrent Very Large Scale Integration computational systems are also covered.* For students who are taking it as ECE 632 there will be a separate advanced final project that will include the use of all digital circuit library that will be developed in the lab exercises and in addition include an analog component to achieve a mixed signal system integration. This will require additional research study as well as comprehension of more advanced topics in VLSI. Supplemental material and additional project instruction will be delivered in the lab.
Prerequisite: ECE 202. Or ECE 305. And ECE 211. Or ECE 304.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

ECE 633. Random Signals and Noise. 3 Credit Hours.
Probability models, Bayes’ theorem, Limit theorems of Laplace and Poisson, functions of random variables, Central limit theorem, conditional expectation and estimation, Stochastic processes, stationarity and ergodicity, cross-spectral analysis, filtering, and prediction are discussed.
Prerequisite: ECE 310. Or IEN 310.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

ECE 634. Communication Networks. 3 Credit Hours.
Principles of digital communications, Local Area Networks (LANs), Wide Area Networks(WANs), Open systems Intercommunication (OSI),Internet reference models, internet architecture and protocols,packet switching a3nd routing, and network performance are discussed.* For students who are taking it as ECE 634 there will be a separate requirement.
Prerequisite: ECE 212. Or ECE 312. And ECE 310. Or IEN 310.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 636. Adaptive Filters And Signal Processing. 3 Credit Hours.
Topics include linear models and estimation, orthogonality principle, Wiener filters, stochastic gradient methods, LMS and RLS algorithms, mean square error and tracking performance and applications.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 637. Principles of Artificial Intelligence. 3 Credit Hours.
Search techniques, game trees, use of heuristics, logic, representation of knowledge, algorithms for automated reasoning including automated reasoning under imperfect information, some advanced approaches to AI-Problems such as planning.
Prerequisite: ECE 218.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

ECE 638. Introduction to Digital Image Processing. 3 Credit Hours.
Prerequisite: ECE 206. Or ECE 307. And MTH 210.
Components: LEC.
Grading: GRD.

ECE 639. Digital Communications. 3 Credit Hours.
Principles for the analysis and design of digital communications systems. Nyquist sampling, signal space representation, digital modulation techniques and optimal receiver design, ISI channels, error control coding, convolutional codes, Viterbi decoder, and wireless applications.
Prerequisite: ECE 404.
Components: LEC.
Grading: GRD.

ECE 640. Digital Speech and Audio Processing. 3 Credit Hours.
Introduction to human speech production, hearing, and perception. Digital speech and audio signal analysis in time and frequency, speech and audio coding, speech synthesis and recognition, language modeling, design of systems for human-machine interaction are also covered.
Prerequisite: ECE 336.
Components: LEC.
Grading: GRD.

ECE 643. BioNanotechnology. 3 Credit Hours.
Introduction on the fundamentals of nanotechnology with a focus on Biomedical Applications. A foundation of nanotechnology concepts will be established through lectures on nanometry with quantum physics basics, nano manufacturing tools, physical, chemical properties of nanomaterials. Application of these principles in electronics, magnetics, mechanics and optics will be discussed. Use of these nanoengineering principles and concepts to focus on biomedical technology applications such as biosensors, biomaterials, biomimetics and therapeutics
Components: LEC.
Grading: GRD.

ECE 646. Reliable Digital System Design. 3 Credit Hours.
Topics include descriptive technique for digital systems, synchronizer failure and metastability estimation, design for testability, and estimating digital system reliability. Computer-Aided Engineering (CAE) tools are also covered. Not open to students with credit in ECE 454. Offered only for Graduate students.
Components: LEC.
Grading: GRD.

ECE 648. Machine Learning. 3 Credit Hours.
Fundamentals of intelligent system design and strategies of learning capability simulation. Selected case studies of learning systems for engineering applications are included.
Prerequisite: ECE 218. Or MTH 309.
Components: LEC.
Grading: GRD.

ECE 649. Wired and Wireless Networking. 3 Credit Hours.
Integration of wireless and wired networks, including Internet, Intranet, and extranet technologies, protocols, and applications. Design and implementation of wireless and wired communication systems.
Components: LEC.
Grading: GRD.

ECE 650. Integrated Circuit Design. 3 Credit Hours.
Introduction to the design of integrated circuits, including MOSFETs, CMOS, and BICMOS technologies. Design of digital circuits, analog circuits, and mixed-signal circuits.
Components: LEC.
Grading: GRD.

ECE 651. Optoelectronics and Photonics. 3 Credit Hours.
Principles of operation, properties and applications of semiconductor devices, junction, metal-semiconductor, metal-oxide-semiconductor, optoelectronic, bulk-effect, and charge-coupled are covered
Components: LEC.
Grading: GRD.

ECE 652. VLSI Systems. 3 Credit Hours.
Fundamentals of MOS Technology in VLSI. System data, control flow, structures, design, layout, maskmaking, fabrication, packaging, and testing of VLSI chips are discussed. Highly concurrent Very Large Scale Integration computational systems are also covered.* For students who are taking it as ECE 652 there will be a separate advanced final project that will include the use of all digital circuit library that will be developed in the lab exercises and in addition include an analog component to achieve a mixed signal system integration. This will require additional research study as well as comprehension of more advanced topics in VLSI. Supplemental material and additional project instruction will be delivered in the lab.
Prerequisite: ECE 202. Or ECE 305. And ECE 211. Or ECE 304.
Components: LEC.
Grading: GRD.

ECE 653. Random Signals and Noise. 3 Credit Hours.
Probability models, Bayes’ theorem, Limit theorems of Laplace and Poisson, functions of random variables, Central limit theorem, conditional expectation and estimation, Stochastic processes, stationarity and ergodicity, cross-spectral analysis, filtering, and prediction are discussed.
Prerequisite: ECE 310. Or IEN 310.
Components: LEC.
Grading: GRD.

ECE 654. Communication Networks. 3 Credit Hours.
Principles of digital communications, Local Area Networks (LANs), Wide Area Networks(WANs), Open systems Intercommunication (OSI),Internet reference models, internet architecture and protocols,packet switching a3nd routing, and network performance are discussed.* For students who are taking it as ECE 654 there will be a separate requirement.
Prerequisite: ECE 212. Or ECE 312. And ECE 310. Or IEN 310.
Components: LEC.
Grading: GRD.

ECE 656. Adaptive Filters And Signal Processing. 3 Credit Hours.
Topics include linear models and estimation, orthogonality principle, Wiener filters, stochastic gradient methods, LMS and RLS algorithms, mean square error and tracking performance and applications.
Components: LEC.
Grading: GRD.

ECE 657. Principles of Artificial Intelligence. 3 Credit Hours.
Search techniques, game trees, use of heuristics, logic, representation of knowledge, algorithms for automated reasoning including automated reasoning under imperfect information, some advanced approaches to AI-Problems such as planning.
Prerequisite: ECE 218.
Components: LEC.
Grading: GRD.

ECE 658. Introduction to Digital Image Processing. 3 Credit Hours.
Prerequisite: ECE 206. Or ECE 307. And MTH 210.
Components: LEC.
Grading: GRD.

ECE 659. Digital Communications. 3 Credit Hours.
Principles for the analysis and design of digital communications systems. Nyquist sampling, signal space representation, digital modulation techniques and optimal receiver design, ISI channels, error control coding, convolutional codes, Viterbi decoder, and wireless applications.
Prerequisite: ECE 404.
Components: LEC.
Grading: GRD.

ECE 660. Digital Speech and Audio Processing. 3 Credit Hours.
Introduction to human speech production, hearing, and perception. Digital speech and audio signal analysis in time and frequency, speech and audio coding, speech synthesis and recognition, language modeling, design of systems for human-machine interaction are also covered.
Prerequisite: ECE 336.
Components: LEC.
Grading: GRD.

ECE 663. BioNanotechnology. 3 Credit Hours.
Introduction on the fundamentals of nanotechnology with a focus on Biomedical Applications. A foundation of nanotechnology concepts will be established through lectures on nanometry with quantum physics basics, nano manufacturing tools, physical, chemical properties of nanomaterials. Application of these principles in electronics, magnetics, mechanics and optics will be discussed. Use of these nanoengineering principles and concepts to focus on biomedical technology applications such as biosensors, biomaterials, biomimetics and therapeutics
Components: LEC.
Grading: GRD.

ECE 666. Reliable Digital System Design. 3 Credit Hours.
Topics include descriptive technique for digital systems, synchronizer failure and metastability estimation, design for testability, and estimating digital system reliability. Computer-Aided Engineering (CAE) tools are also covered. Not open to students with credit in ECE 454. Offered only for Graduate students.
Components: LEC.
Grading: GRD.

ECE 668. Machine Learning. 3 Credit Hours.
Fundamentals of intelligent system design and strategies of learning capability simulation. Selected case studies of learning systems for engineering applications are included.
Prerequisite: ECE 218. Or MTH 309.
Components: LEC.
Grading: GRD.
ECE 653. Neural Networks. 3 Credit Hours.
Artificial neural network algorithms and structures, learning process, perceptron, least-mean-square algorithms, multilayer perceptron, error back-propagation, radial-basis function networks, the Hopfield network, and self-organizing systems are discussed. Prerequisite: ECE 218. Or MTH 309.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 662. Wireless and Cellular Communication. 3 Credit Hours.
Wireless Channel Characterization: path loss, shadowing, fading, frequency-selective channels, Doppler spread, and delay spread. Diversity techniques: frequency, time and space diversity. Multiple Antenna Systems: space-time coding, beamforming and layered space-time system. Digital Modulation: adaptive modulations and Orthogonal Frequency Division Multiplexing (OFDM). Cellular Concept: frequency reuse, co-channel interference and handoff. Multiple Access Methods: Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA) and random access. CDMA: spreading codes, RAKE receiver, multiuser detection and power control. Prerequisite: ECE 404.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

ECE 664. Wireless Networks. 3 Credit Hours.
Introduction of wireless channels and network. Introduction of medium access control: Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Code Division Multiple Access (CDMA) and Carrier Sense Multiple Access. Wireless data networks: IEEE 802.11 (WiFi), IEEE 802.16 (WiMax) and Bluetooth. Wireless network layer: mobile IP and mobile ad-hoc networks. Wireless transport layer: mobile TCP. Wireless Cellular systems: network structure and call processing of GSM and CDMA systems. Pre or Corequisite: ECE 634.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 672. Object-Oriented and Distributed Database Management Systems. 3 Credit Hours.
Object-Oriented modeling concepts in languages and database systems. Object-Oriented database systems. Semantic data models, nested-relational, object-relational databases. Distributed database system. Federated Databases. Application to engineering design problems. Prerequisite: ECE 467 Or ECE 567.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 673. Information Assurance. 3 Credit Hours.
Assurance as the basis for believing an information system will behave as expected. Security design fundamentals that help create systems that are fit for their purpose and worthy of being trusted. The concepts of information assurance fundamentals. Vulnerabilities and Risk Management assessment. Security Life-Cycle, Mechanisms, Frameworks and Emerging Threats. Prerequisite: ECE 634.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 674. Agent Technology. 3 Credit Hours.
Agent definition and applications, agent modeling, theories, agent representation using KIF (Knowledge Interchange Format), agent behavior, ethical and emotional agents, agent communication languages (KQML (Knowledge Query and Manipulation Language)), agent development environments and tools, agent systems (cooperative agents, interface agents, information age nts, learning agents, believable agents, agents for workgroups, mobile agents), and agent case studies are covered. Prerequisite: ECE 537 Or ECE 637.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 675. Digital Forensics. 3 Credit Hours.
The techniques and skills to apply forensics techniques throughout an investigation life cycle while complying with legal requirements. Preservation, identification, extraction and documentation of computer evidence stored on a computer. Application of forensics techniques to investigate and analyze a host in a network, devices including mobile, and techniques to investigate and analyze network traffic. Prerequisite: ECE 634.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 676. Internet and Intranet Security. 3 Credit Hours.
Security issues and applications for securing internet and Intranet-based information exchange. Secure information models, security tools, security services, security protocols, electronic commerce, virtual private networks, firewalls, and security versus cost tradeoffs are covered. For students who are taking it as ECE 676 there will be a separate requirement. Prerequisite: ECE 368.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 677. Data Mining. 3 Credit Hours.
Introduction to the general principles of inferring useful knowledge from large data sets. Data mining algorithms, including infering rules, linear regression, decision trees, association rules, and predictive models. Evaluation of data mining algorithms, including training, testing, prediction, comparison, cost, and cross-validation. Data mining applications. Prerequisite: ECE 467 Or ECE 567.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 678. Network Security. 3 Credit Hours.
Information about the threats that may be present in the cyber realm and the techniques that can be taken to protect a network and communication assets from cyber threats. Threat examination and application of security measures. Implementation of network defense measures and adjustments for cloud and hybrid applications. Prerequisite: ECE 673 and 676.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.
ECE 680. Electrical and Computer Engineering Internship. 1-3 Credit Hours.
Analysis, design, and research experience obtained at an operating and recognized industry. Approved project jointly supervised and assessed by departmental faculty and industrial partner.
Components: THI.
Grading: GRD.
Typically Offered: Fall & Spring.

ECE 681. Special Problems. 1-3 Credit Hours.
Project course introducing methods of research through an individual investigation of current problems. Offered by special arrangement only.
Components: THI.
Grading: GRD.
Typically Offered: Fall.

ECE 682. Special Problems. 1-3 Credit Hours.
Project course introducing methods of research through an individual investigation of current problems. Offered by special arrangement only.
Components: THI.
Grading: GRD.
Typically Offered: Spring.

ECE 683. Special Problems. 1-3 Credit Hours.
Project course introducing methods of research through an individual investigation of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Summer.

ECE 684. Special Problems. 1-3 Credit Hours.
Project course introducing methods of research through an individual investigation of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Summer.

ECE 689. Special Topics in Electrical Engineering. 1-3 Credit Hours.
Lecture courses in selected areas of specialization within Electrical Engineering.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 690. Electrical and Computer Engineering Internship. 1-3 Credit Hours.
Analysis, design, and research experience obtained at an operating and recognized industry. Approved project jointly supervised and assessed by departmental faculty and industrial partner.
Components: THI.
Grading: GRD.
Typically Offered: Fall & Spring.

ECE 691. Special Problems. 1-3 Credit Hours.
Project course introducing methods of research through an individual investigation of current problems. Offered by special arrangement only.
Components: THI.
Grading: GRD.
Typically Offered: Fall.

ECE 692. Special Problems. 1-3 Credit Hours.
Project course introducing methods of research through an individual investigation of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 693. Special Problems. 1-3 Credit Hours.
Project course introducing methods of research through an individual investigation of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Summer.

ECE 694. Special Topics in Computer Engineering. 1-3 Credit Hours.
Lecture courses in selected areas of specialization within Computer Engineering.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 695. Special Topics in Computer Engineering. 1-3 Credit Hours.
Lecture courses in selected areas of specialization within Computer Engineering.
 Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 696. Special Topics in Computer Engineering. 1-3 Credit Hours.
Lecture courses in selected areas of specialization within Computer Engineering.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 697. Special Topics in Electrical Engineering. 1-3 Credit Hours.
Lecture courses in selected areas of specialization within Electrical Engineering.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 698. Special Topics in Electrical Engineering. 1-3 Credit Hours.
Lecture courses in selected areas of specialization within Electrical Engineering.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 715. M. S. Design Project I. 3 Credit Hours.
Comprehensive M.S. design project in electrical or computer engineering. Open only to students in the BS/MS dual-degree program.
Components: THI.
Grading: GRD.
Typically Offered: Fall & Spring.

ECE 716. M. S. Design Project II. 3 Credit Hours.
Continuation of ECE 715. Open only to students in the BS/MS dual-degree program.
Components: THI.
Grading: GRD.
Typically Offered: Fall & Spring.

ECE 738. Computer Vision. 3 Credit Hours.
Principles of computer vision. Segmentation, shape and texture analysis, 3D scene analysis, polyhedral scenes, time-varying image analysis, parallel processing algorithms, matching, and recognition are covered.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 753. Pattern Recognition and Neural Networks. 3 Credit Hours.
Statistical pattern classification, feature extraction, cluster analysis, neural net models, Hopfield net, competitive learning, multi-layer perceptron, and the Boltzmann machine are discussed.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 756. Information Theory. 3 Credit Hours.
Measure of uncertainty and entropy, two dimensional sources, noisy channels, mutual and transinformation, equivocation, efficiency and channel capacity, minimum redundancy coding, error-detecting, error-correcting codes, continuous channel without memory. Gaussian additive noise, sampling theorem, and vector space are covered.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 758. Computer Vision. 3 Credit Hours.
Principles of computer vision. Segmentation, shape and texture analysis, 3D scene analysis, polyhedral scenes, time-varying image analysis, parallel processing algorithms, matching, and recognition are covered.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 753. Pattern Recognition and Neural Networks. 3 Credit Hours.
Statistical pattern classification, feature extraction, cluster analysis, neural net models, Hopfield net, competitive learning, multi-layer perceptron, and the Boltzmann machine are discussed.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 756. Information Theory. 3 Credit Hours.
Measure of uncertainty and entropy, two dimensional sources, noisy channels, mutual and transinformation, equivocation, efficiency and channel capacity, minimum redundancy coding, error-detecting, error-correcting codes, continuous channel without memory. Gaussian additive noise, sampling theorem, and vector space are covered.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 781. Advanced Problems. 1-3 Credit Hours.
Research and/or design projects through an individual investigation of current problems. Offered by special arrangement only.
Components: THI.
Grading: GRD.
Typically Offered: Fall.
ECE 782. Advanced Problems. 1-3 Credit Hours.
Research and/or design projects through an individual investigation of of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 783. Advanced Problems. 1-3 Credit Hours.
Research and/or design projects through an individual investigation of of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Summer.

ECE 784. Advanced Problems. 1-3 Credit Hours.
Research and/or design projects through an individual investigation of current problems. Offered by special arrangement only.
Components: LEC.
Grading: GRD.
Typically Offered: Summer.

ECE 785. Advanced Problems in CyberSecurity. 3 Credit Hours.
Comprehensive M.S. capstone project in CyberSecurity.
Prerequisite: ECE 678.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

ECE 792. Professional Communications Skills for Engineering Grad Students. 0 Credit Hours.
This course covers fundamental areas in professional communication for Engineering graduate students. Topic areas include: presenting research at conferences, writing manuscripts for publication, preparing the dissertation, the PhD comprehensive exams, effective teaching and mentoring, and obtaining positions in academia. Through interactive workshops, in-class exercises, brief presentations and assignments, students will have an opportunity to practice and strengthen necessary communication skills, developing collaborations, and developing effective presentation skills.
Components: MOD.
Grading: SUS.
Typically Offered: Fall & Spring.

ECE 795. Advanced Topics in Computer Engineering. 1-3 Credit Hours.
Subject matter offerings in computer engineering based upon student demand and availability of faculty. Subtitles describing the topics to be offered will be shown in parentheses in the printed class schedule, following the title "Advanced Topics".
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 796. Advanced Topics in Computer Engineering. 1-3 Credit Hours.
Subject matter offerings in computer engineering based upon student demand and availability of faculty. Subtitles describing the topics to be offered will be shown in parentheses in the printed class schedule, following the title "Advanced Topics".
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 797. Advanced Topics in Electrical Engineering. 1-3 Credit Hours.
Subject matter offerings in electrical engineering based upon student demand and availability of faculty. Subtitles describing the topics to be offered will be shown in parentheses in the printed class schedule, following the title "Advanced Topics".
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 798. Advanced Topics in Electrical Engineering. 1-3 Credit Hours.
Subject matter offerings in electrical engineering based upon student demand and availability of faculty. Subtitles describing the topics to be offered will be shown in parentheses in the printed class schedule, following the title "Advanced Topics".
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 799. Advanced Topics. 1-3 Credit Hours.
Subject matter offerings based upon student demand and availability of faculty. Subtitles describing the topics to be offered will be shown in parentheses in the printed class schedule, following the title "Advanced Topics".
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

ECE 800. Master's Thesis. 1-6 Credit Hours.
The student working on his/her master’s thesis enrolls for credit, in most departments not to exceed six, as determined by his/her advisor. Credit is not awarded until the thesis has been accepted.
Components: THI.
Grading: SUS.
Typically Offered: Fall & Spring.

ECE 801. Research in Residence. 1 Credit Hour.
Used to establish research in residence for the thesis for the master’s degree after the student has enrolled for the permissible cumulative total in ECE 810 (usually six credits). Credit not granted. May be regarded as full time residence.
Components: THI.
Grading: GRD.
Typically Offered: Fall & Spring.

ECE 825. Continuous Registration--Master's Study. 1 Credit Hour.
To establish residence for non-thesis master's students who are preparing for major examinations. Credit not granted. Regarded as full time residence.
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

ECE 830. Pre-Candidacy Doctoral Dissertation. 1-12 Credit Hours.
Doctoral dissertation credits taken prior to Ph.D. student's candidacy. The student will enroll for credit as determined by his/her advisor. No more than 12 hours of ECE 830 may be taken in a regular semester; no more than six in a summer session.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.
ECE 840. Post-Candidacy Doctoral Dissertation. 1-12 Credit Hours.
Doctoral dissertation credits taken after Ph.D. student has been admitted
to candidacy. The student will enroll for credit as determined by his/her
advisor. No more than 12 credits in ECE 840 may be taken in a regular
semester; no more than six credits in a summer session.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.

ECE 850. Research in Residence. 1 Credit Hour.
Used to establish research in residence for the Ph.D., after the student
has been enrolled for the permissible cumulative total in appropriate
doctoral research. Credit not granted. May be regarded as full-time
residence as determined by the Dean of the Graduate School.
Components: THI.
Grading: GRD.
Typically Offered: Fall & Spring.