MARINE ECOSYSTEMS AND SOCIETY

https://www.graduate.rsmas.miami.edu/graduate-programs/marine-ecosystems-and-society/index.html

Dept. Code: MES

Students enrolled in the Marine Ecosystems and Society (MES) program work at the intersection of science and society, committed to assessing, managing, and conserving marine resources through innovation and research. Although course selections are tailored to match individual research and career objectives, our graduates acquire knowledge and expertise critical to ensuring the sustainability of natural resources.

MES faculty expertise spans quantitative and qualitative disciplines that integrate the biological, ecological, economic, and social dimensions of marine resources and how they are shaped by policy and regulatory frameworks. The essence of the MES program lies in the diversity of our faculty and curriculum, fostering the cross- and interdisciplinary collaborations necessary to solve some of the world’s most challenging ocean conservation issues. The goal of our Ph.D. and M.S. program is to prepare students as future leaders in the fields of marine fisheries science, ecosystem modeling, aquaculture, conservation, ecosystem science, coastal geography, socioeconomics, cultural and natural resource management, climate change, environmental law, and marine policy.

Degree Programs

- Master of Professional Science (M.P.S.)
 - Requires 30 credit hours, including 24 course credit hours and 6 internship credit hours.
- Master of Science (M.S.) (p. 1)
 - Requires 30 credit hours, including 24 course credit hours and 6 research credit hours.
- Doctor of Philosophy (Ph.D.)
 - Requires 60 credit hours, including a minimum of 27 course credit hours and a minimum of 12 research credit hours.

Program Concentrations

- Aquaculture and Fisheries Science
- Climate Science and Policy
- Coastal Zone Management
- Ecosystem Modeling and Sustainability
- Exploration Science
- Fisheries Management Science
- Marine Mammal Science
- Marine Population Dynamics
- Marine Resource Economics
- Ocean Law and Policy
- Shark Ecology and Conservation
- Underwater Archaeology

Master of Professional Science (M.P.S.) Programs

There are eight MES tracks for the M.P.S. degree:

- B.A./M.P.S. in Marine Ecosystems and Society (MES) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/marine-ecosystems-society-ba-mps/)
- J.D./M.P.S. in Marine Ecosystems and Society (MES) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/marine-ecosystems-society-jd-mps/)
 - The School of Law and the Rosenstiel School offer a joint degree program (https://www.law.miami.edu/academics/jd-mps-marine-ecosystems-and-society/) in law and marine ecosystems and society. Upon completion of this program, a student earns a Juris Doctor degree from the School of Law and M.P.S. degree in Marine Ecosystems and Society from RSMAS.
- M.P.S. in Aquaculture (AQU) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/aquaculture-mps/)
- M.P.S. in Coastal Zone Management (CZM) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/coastal-zone-management-mps/)
• M.P.S. in Exploration Science (ESC) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/exploration-science-mps/)

• M.P.S. in Marine Conservation (MCO) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/marine-conservation/)

• M.P.S. in Underwater Archaeology (UA) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/underwater-archaeology-mps/)

Master of Science (M.S.) Program

• M.S. in Marine Ecosystems and Society (MES) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/marine-ecosystems-society-ms/)

Doctor of Philosophy (Ph.D.) Program

• Ph.D. in Marine Ecosystems and Society (MES) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-ecosystems-and-society/marine-ecosystems-society-phd/)

MES 601. Political Ecology of Marine Management. 3 Credit Hours.
Course provides a grounding in political ecology as an important theoretical approach to resource policy and management. The social analysis of resource use, social change, and development are discussed. Models of development and concepts of nature relate to resource use and policy formation are also included. Within this framework, ethnicity, class, and the politics of conservation are explored.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 602. Economics of Natural Resources. 3 Credit Hours.
Course brings together the approaches of natural resource and environmental economics to provide a comprehensive overview of the economics of national, international, and global environmental problems. A unifying theme throughout the course is the concept of sustainable development, defined as maximizing the net benefit to economic development while maintaining the services and quality of natural resources over time. Economic reasoning is used to examine the causes and consequences of environmental and resource problems and measures for dealing with them.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 603. Interdisciplinary Environmental Research: Introduction to the Why and the How. 3 Credit Hours.
The why and the how of developing and implementing interdisciplinary environmental research; research objectives and design choices informed by philosophies of knowledge and policy relevance. Assignments include development of research questions, a preliminary literature review, a draft dissertation proposal, and oral communication of research. Course is structured around peer critique and discussion of work in progress.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 604. Fieldwork in Coastal Management: Tourism, Conservation, and Development. 3 Credit Hours.
This course will select a coastal research site and explore its physical geography, culture, legal framework and institutions, and tourist development/conservation conflicts. In addition, we will examine different methodologies for diagnosing the site's socioeconomic, governance, and environmental characteristics. Participants will meet weekly throughout the semester in Miami to discuss background readings and develop a group research field project that course participants will carry out during a Spring Break trip to the research site. Upon return to the University of Miami, the class will prepare manuscripts and presentations based on the field data that course participants have collected during the trip.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 605. Fieldwork in Coastal Cultures. 3 Credit Hours.
Field course in which the student participates in a social and economic analysis of a coastal culture (i.e., stone crab fishermen in Everglades City, spiny lobster fishermen in Key West, boat builders and commercial divers in the Abacos, Bahamas). Preliminary lectures and reading introduce the theory and method which the student then practices during a week-long field trip.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.
MES 606. Advanced Fieldwork in Coastal Cultures. 3 Credit Hours.
This ethnographic fieldwork course lets you experience coastal cultures first-hand in Miami and the Keys. Learning the political ecology approach in the field, you keep an in-depth field journal, complimenting entries with photography as visual anthropology. We will be interacting with some of Miami’s wealth of ethnic communities, both Latino and Haitian.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 608. Biometrics in Marine Science. 3 Credit Hours.
Applied statistical analysis in marine biology and biological oceanography. Descriptive statistics, probability distributions, and hypothesis testing are discussed. Concepts of analysis of variance, simple linear regression, and computer statistical distribution-free methods are also included as well as principles and procedures with computer statistical packages for data analysis. Lecture and laboratory.

Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 610. Environmental Planning and the Environmental Impact Statement. 3 Credit Hours.
Course takes a broad view of environmental planning and analysis while focusing specifically on the preparation of environmental impact statements. Statutory requirements and procedures at the federal level are examined. Judicial opinions are studied that reflect environmental disputes and controversies. The course also considers some of the substantive requirements of environmental impact analyses such as the assessment of physical and biological environment and socioeconomic impacts.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 612. Aquaculture I. 3 Credit Hours.
This course examines the various strategies of resource exploitation and utilization related to aquaculture development. It focuses on environmental, technological, management, social and economic aspects of sustainable aquaculture. Advanced, emerging technologies and management strategies are examined, both at the hatchery and growout levels. The course also covers systems and all stages of planning and development, from site and species selection to feasibility studies, evaluation and sustainable use of natural resources, advanced hatchery and growout technologies. Emphasis is given on environmental sustainability as well as technical and economic feasibility of aquaculture projects.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 613. Aquaculture II Lab. 3 Credit Hours.
This course covers basic science and advanced aquaculture technologies, with emphasis on production. It encompasses reproduction, spawning, larval husbandry, nursery and growout techniques of commercially important species of fish, crustaceans, mollusks, algae, non-traditional species and the production of live feeds such as microalgae, rotifers, Artemia spp. and other zooplanktonic organisms. The course also covers ontogeny, nutrition, physiology, bioenergetics and growth, environmental monitoring, disease prevention and control (prophylaxis, probiotics and vaccines), water quality management and growout technologies such as recirculating aquaculture systems (RAS), bioflocs and offshore surface and submerged cages. The course addresses advanced technology and proper management practices for sustainable aquaculture development. Aquaculture II is primarily a lab course, with a great deal of hands-on experience at the experimental hatchery and are required to conduct experimental trials and assist with ongoing projects. Course requires a background in either aquaculture and biological sciences or business.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 614. Underwater Archaeology Field Techniques. 3 Credit Hours.
This course is designed to provide students the practical and scientific tools necessary to conduct archaeological investigations in underwater contexts. Critical skills such as baseline mapping, trilateration, artifact illustration, photography, and others are discussed, practiced, and ultimately applied over the course of the semester. The in-field practicum portions of the course will take place on nearby shipwrecks within Biscayne National Park. Please note that there is a significant amount of diving to complete this this course.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.
MES 615. Marine Archaeological Survey and Technology. 3 Credit Hours.
This course is designed to provide students with an introduction to current technologies and marine remote sensing tools utilized in archaeological survey. Instruction in the use of technology such as the magnetometer, sidescan sonar, sector scan sonar, scanning lasers, and other tools are covered. The use of data acquisition software and the post processing of data are also key elements of this course. The bulk of this course takes place at the Broad Key Research Station over the week of spring break. In addition to the week, students meet several times before and during the semester in order to prepare for the week and also draft a final group report for submission. There is a significant component of this course utilizing boats and also a smaller diving component.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 616. Ocean Policy and Development and Analysis. 3 Credit Hours.
Ocean policy development and analysis of issues such as: offshore oil drilling, fisheries resource conflicts, marine mammal protection, ocean dumping and incineration, multiple use conflicts in marine protected areas, pollution from land based sources, and oil spill contingency planning.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 617. Aquaculture IV: Aquaculture Business, Regulatory, and Environmental Considerations. 3 Credit Hours.
This course examines the substantive business, regulatory, and environmental issues concerning Aquaculture from offshore and coastal projects to land-based systems. Legal and regulatory considerations related to Aquaculture project development and operation will be covered. Aspects of business planning for different species and production systems will be examined. The interdisciplinary approach to Aquaculture will combine business and legal considerations with biological and environmental limitations.
Prerequisites: MES 612 and MES 613.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 618. Coastal Zone Management. 3 Credit Hours.
Development of a framework for formulation and assessment of coastal zone policy. Analysis of issues and conflicts in coastal zone management (CZM), such as: zoning and planning, coastal and beach protection, ecosystem protection, the federal flood insurance program, adaptations to sea level rise, coastal pollution from land-based sources, and tourism impacts.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 619. Aquaculture III. 3 Credit Hours.
Aquaculture III will complement Aquaculture I and II-Lab. It is a field course conducted simultaneously with an annual UM-IATTC Tuna Workshop at the world renowned Achotines Laboratory in Panama, Central America. Students will be able to apply most of the topics taught in MES 512/612 and MES 513/613. It covers reproduction and larval development of commercially and ecologically important marine fish species, focusing on tuna. Topics include physiology, biology, ecology, genetics, nutrition and environmental issues related to marine fish aquaculture. The course covers and requires participating in capture, handling, transportation, maturation, spawning, larval husbandry, nursery and growout techniques. Participants will learn about the research projects being conducted by the IATTC with yellowfin tuna, Thunnus albacares, and will visit and spend time at Open Blue Offshore farm in the Atlantic Ocean side of Panama.
Components: LEC.
Grading: GRD.
Typically Offered: Summer.

MES 620. Environmental Law and Policy. 3 Credit Hours.
This course will provide an overview of environmental law and its practical applications at the federal, state, and local level. The course will also include an introduction to the United States legal system, the administrative state, environmental regulations, and current issues in environmental law and policy. Finally, the course will focus on environmental themes that are of particular importance to marine professionals, such as marine mammal protection, marine protected areas, coastal wetland regulation, water pollution litigation, and environmental justice.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.
MES 621. Water Resources in China and Vietnam: Science and Policy. 3 Credit Hours.
The course examines Water Resources from broad perspectives (water quality and quantity, ground water, international river management, watershed management, coastal issues). Additionally, it compares management strategies and problems in three countries: China, Vietnam, and the USA. The course is also highly interdisciplinary - combining natural science, policy, and the social sciences. We spend half of the time in Vietnam and the other half in China, and in both countries we have long-term established cooperation with three universities: Hanoi University of Mining and Geology (HUMG), Hanoi University of Natural Resources and the Environment (HUNRE) and Yunnan University, Asian International Rivers Centre (AIRC). In both countries, we arrange lectures and discussions with local students at these universities for one week. The other week is dedicated to field work and travel.
Components: LEC.
Grading: GRD.
Typically Offered: Summer.

MES 622. Principles and Practices of Marine Social Science Research. 3 Credit Hours.
This course will introduce students to the theory of marine social science methods, focusing on how the methods relate to the design, planning, implementation, analysis, and reporting of marine social science research. The course will be divided into three sections: theory, design, and planning; statistical analysis; and spatial data construction and analysis.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 623. Applied Environmental Economics. 3 Credit Hours.
The objective of this course is to familiarize students with economic arguments and methods applied to environmental problems, such as environmental quality, natural resource management, and conservation. The course will cover economics and computer programming, but the emphasis will be on developing communication skills to inform policy making. The class is intended for graduate students seeking to develop intuition and the skills necessary for the discussion of environmental policies.
Prerequisite: MES 624.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 624. Data Analysis for Environmental Policy. 3 Credit Hours.
The objective of this class is to provide students with applied skills that will allow them to understand, discuss, and perform general quantitative analyses with scientific and social data related to environmental problems. The course will cover required statistical background and methods, as well as an introduction to advanced topics and challenges in population and causal inference. Students will also be trained on how to use computing programming tools to manipulate data and perform analyses. The class is intended for graduate students seeking to learn modern methods and techniques for quantitative analysis of environmental problems.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 625. Fisheries Socioeconomics and Management. 3 Credit Hours.
The course covers both conceptual and practical aspects dealing with the management of commercial and recreational fisheries. The first part of the course offers an introduction to micro-economic principles, focusing on efficient resource allocation. Building on these principles, we develop bio-economic models to illustrate the interactions between the resource, harvesting sector and environment. We also review the theory and practice of unregulated open access, limited entry and rights-based management. Last, we study the economics of the recreational sector and explore a number of contemporary fishery management challenges.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 626. Submerged Cultural Resource Management. 3 Credit Hours.
This course discusses various aspects and details of managing underwater cultural heritage/submerged cultural resources. Topics will include ethics, policies and procedures, marine protected areas, and federal, state, and international laws governing management of submerged archaeological sites. Specific focus is placed on examining the variety of management concepts and frameworks utilized both in the U.S. and internationally. Finally, the role and value of public archaeology in management is also presented and discussed.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.
MES 627. Exploration Science Field Studies. 3 Credit Hours.
This course will be held as a sailing expedition to the Channel Islands in California traveling aboard the sailing vessel Sea Dragon. This course provides students with an opportunity to gain field experience by being part of an expedition team that is tasked with observing, documenting, and communicating discovery, which are the hallmarks of exploration. Students will be tasked with collecting data and producing media while learning to travel and work as an expedition team. They will learn expedition skills including navigating and sailing a circumnavigation class 72-foot sailing vessel. In addition to the week of spring break, students meet throughout the semester to work on logistics, background research, and presentations.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 628. Seafood Market and Marketing. 3 Credit Hours.
This course aims at educating the next generation of professionals in the seafood business and present future managers of an aquaculture business with the necessary knowledge in the packaging, pricing, placement, promotion and distribution of their finished product to give them the best return on their investment. The course covers basic theories but it is primarily a practical approach to the production, marketing and distribution of seafood products in the U.S. and the world market.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 629. Biology, Ecology, and Management of Mangrove Ecosystems. 3 Credit Hours.
This course is intended to introduce students to mangrove ecosystems, one of the most productive, and biologically diverse, ecosystems in the world, and one of South Florida's key coastal ecosystems. The principal objective is to explain how our scientific understanding of mangrove ecosystems has been unfolding and how today they are considered paramount not only for their organic carbon contributions to coastal areas, but as protectors of the coast, mitigators of global climate change, reservoirs of biodiversity, and supporters of the livelihoods of millions of inhabitants throughout the world. The course will consist of lectures, class discussions, and presentations of student assignments. The lectures will follow an open seminar format in which all students are expected to actively participate in the discussion of the presented material. Two lectures will take place during field trips to local mangrove areas.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 630. Port Operations and Policy. 3 Credit Hours.
The course will include: Introduction to ports; port geography; port operations; port administration; Federal port policy; free ports/free zones; port investment/tariffs; port marketing; Coastal Zone Management and ports; case studies, CZM; fostering economic development; and Port planning and development.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 631. Marine and Coastal Protected Area Theory, Planning, Management, and Issues. 3 Credit Hours.
This course shall present the study and analysis of marine and coastal protected areas in an interdisciplinary manner, commencing with an overview of conservation biology and protected area principles (ex. island biogeography), a survey of coastal and marine protected area (MPA) theory, and the influence of ecological parameters on MPA design. Another critical component of the course will be a historical review on MPAs and MPA management, how the concept developed and proliferated, and its present status. The course will next address the human dimensions and socioeconomic impacts of MPAs, including the economic performance and financing mechanisms of MPAs, stakeholder engagement, participation, and conflicts, and management approaches. Finally, the course will review a series of MPA case studies, which incorporate the aforementioned topics in a 'real world' environment and demonstrate how the concept has been applied across the world.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 632. Theory and Method in Underwater and Maritime Archaeology. 3 Credit Hours.
This course covers archaeological theory and methodologies used to interpret underwater and maritime sites in both prehistoric and historic contexts. The interconnection of theoretical constructs with submerged archaeological remains is emphasized, providing a broad toolset that can be used to better understand and explain the archaeological assemblage and associated data sets acquired from the investigation of these sites.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.
MES 633. Decision Analysis: Natural Hazards and Catastrophes. 3 Credit Hours.
This course addresses the behavioral factors (cognitive biases, heuristics, risk perception, social influences, and past experiences) that together help explain why people tend to underprepare for potential natural and man-made disasters. Implications for science communication and public policy are emphasized.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 634. Shark Behavioral Ecology and Conservation. 3 Credit Hours.
Within a semester, students will learn core concepts in shark behavioral ecology and key aspects of shark biology needed for the holistic understanding and study of shark behavioral ecology and conservation, including shark sensory, reproductive, physiological, movement and foraging ecology. These concepts will be used to link shark behavioral ecology to its consequences for conservation and management. Students will also be given the unique opportunity to interact with and be trained in advanced technologies used to study shark behavioral ecology, such as biotelemetry (acoustic and satellite tags). Through demonstrations and in-class exercises, students work with real shark biotelemetry data and be taught basic spatial analyses of shark satellite tracking data, such as home range analysis. Students will also participate on a shark research trip out of Miami with UM's Shark Research and Conservation Program, where they will be shown shark research survey, sampling and tagging techniques as well as gain hands-on experience participating in ongoing research.

Pre or Corequisite: MSC 460 or MES 560 or MES 660.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 645. Marine Population Assessment Surveys and Analysis. 3 Credit Hours.
In spite of global conservation efforts, marine animal populations show increasingly critical low levels of abundance. Marine population assessment techniques are mostly based on fishery-dependent data for those species that are commercially exploited. Population assessment techniques based on these types of data usually lack spatial resolution and they do not provide spatial-temporal patterns of species diversity and community structure. Conversely, direct resource surveys aim to provide representative estimates of the relative abundance and population structure of the species (and community) of interest. These surveys can generate multi-species population databases that are fundamental for the modeling and understanding of important ecosystem-wide mechanisms of resource conservation. Multi-species indices of relative abundance are also important in the “tuning” of modern stock assessment and conservation methods. In this course students will learn about experimental sampling concepts and designs, instrumentation, survey implementation and statistical methods to directly assess size-structured population abundance (i.e., density estimates scaled to survey area), and of exploited and non-target species (e.g. sea turtles, marine mammals, etc.) in the ecosystem. Students will analyze real data from various surveys carried out in the past using statistical techniques to estimate valid population parameters and variances. Comparative analyses of survey designs are discussed based on an ample literature on the subject matter, which will be made available to the students.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 646. Marine Population Biology Processes and Modeling. 3 Credit Hours.
The course examines some of the fundamental life history processes that control wild aquatic populations and uses mathematics to help describe and understand such processes. Mathematical models, developed for each process following a series of simplifying assumptions, should be an adequate description of the biological traits of interest. In this course, students will learn basic population biology concepts, models to describe them and estimation methods for population parameters included in such models. The course focuses on ageing determination, individual growth, survival, migration, reproduction and feeding. The course also covers the data requirements and statistical validation of statistical model fits such that students will develop an ability to integrate and summarize complex biological knowledge through a set of well-defined mathematical and statistical methods. It uses examples of a broad range of marine taxa including harvested species and protected species (marine mammals, sea turtles and corals).

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 660. Introduction to Marine Geographic Information Systems. 3 Credit Hours.
Marine Geographic Information Systems are emerging as a distinct subset of GIS, due to fundamental differences between terrestrial and underwater spatial information (2-D vs. 3-D, multiresolution, synoptic data collection, time depth (4-D) modeling). Approximately the first half of this course is a brief review of basic GIS, and the second half concentrates on aspects of marine data acquisition and manipulation in the GIS context.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.
MES 661. Introduction to Marine Geographic Information Systems - Laboratory. 0 Credit Hours.
Introduction to Marine Geographic Information Systems - Laboratory introduces students to the basic methods and technology in Marine Geographic Information Systems. The course is taught with hands-on laboratory exercises following the evolution of Marine Geographic Information Systems, from basic cartography to topological and network modeling to internet access and application.
Components: LAB.
Grading: GRD.
Typically Offered: Fall & Summer.

MES 662. Intermediate Spatial Analysis. 3 Credit Hours.
This is an advanced GIS course and is intended for students who have taken an introductory course in GIS. The course will consist of raster data modeling, spatial analysis, introductory concepts in remote sensing and geostatistical analysis. Additionally, we will be using modules or scripts for more GIS functionality. The course will have a lecture part and laboratory part to advance the student's knowledge in spatial analysis. Students will also be assigned journal readings showing practical applications of raster data modeling. The students will use ArcGIS Pro 2.2 and with several extensions to complete the lab exercises and the required GIS project.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 664. Citizen and Participatory Science. 3 Credit Hours.
The Citizen and Participatory Science course will focus on preparing students for designing and implementing citizen and participatory science projects aimed at addressing questions and problems around specific environmental issues. As social networks grow, open data comes online and mobile technologies proliferate and advance, the opportunity to tap into eager and interested citizens to collect data for research and documentation purposes is quickly rising. This program will look at history of citizen science, which is over 100 years old, and will analyze current and past projects. Students will be exposed to how citizen science projects are designed and implemented and how they can be best leveraged to gain useful data for research. Guests lecturers will be invited for virtual and in-person presentations. A key component of the course will be for students to design a citizen science project using best practices. These projects can provide the baseline for launching real projects with organizations interested in applying citizen science to their work. The course will look at both technology driven projects as well as low-tech projects to expose students to the range of work being done in this rapidly evolving area.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 665. Science and Natural History Media Production. 3 Credit Hours.
The emphasis of this course is on documentary video production using a variety of technologies and methods. As video becomes increasingly used in communication, this course will provide an overview of the production process (pre-production, production, post-production) for those with backgrounds in science, education, and outreach. A variety of films will be reviewed and the process of science storytelling will be examined. In addition, the course will touch on mobile, mapping, imaging, ROV and UAV (drone) technologies as they relate to media production.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 670. Conservation and Management of Marine Mammals. 3 Credit Hours.
This course explores current and pressing threats to large marine vertebrates, particularly mammals, and the relative legislation in place to protect them. Additionally, we will explore the methods and tools used to assess, manage, and conserve marine mammal populations, including case studies that exemplify both successes and failures. Discussions will include anthropogenic impacts, the Marine Mammal Protection Act/IWC/ESA/Florida Manatee Sanctuary Act/IUCN, a stock as a management unit, OSP/PBR, mark-recapture and other methodologies integral to wild population management, marine mammal strandings response, and the ethics of human intervention as it relates to the management of marine ecosystems as a whole. Emphasis will also be placed on the acquisition of relevant skill sets, such as communication of conservation messages using social media, advocacy with integrity, grant writing, and stranding and rehabilitation procedures and certifications.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 671. Marine Conservation Biology. 3 Credit Hours.
Until now, fisheries management has used a species-specific approach to conservation, focusing attention on economically important species that people consume. There has been some research on charismatic mega-fauna, particularly whales, seabirds and sea turtles. To this day, fishery biologists are concerned mainly with assessing stocks of commercially harvested species to maintain biomass production, rather than maintaining and restoring biological integrity: species composition, habitat structure and ecosystem function. It is only in the past few years that a new biodiversity-focused, ecosystem-based, multidisciplinary scientific approach to marine conservation has emerged. This new paradigm is known as Marine Conservation Biology.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.
MES 672. The Archaeology of Seafaring. 3 Credit Hours.
Ships and seafarers have had considerable influences on civilization throughout history. The ship typically represents the pinnacle of a society's understanding of many disciplines: astronomy, geography, metallurgy, physics, warfare, et cetera. No other process similarly spread the delights and devastation of the world so effectively. This course studies man's evolutionary relationship with the sea from early civilization through the 20th century. Emphasis will be on archaeological and ethnographical investigations concerning shipwrecks and maritime epicenters supporting maritime culture. This will be a lecture course supported by visual, audible, and hands-on presentations.

Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

MES 673. Marine Conservation Outreach. 3 Credit Hours.
This course will explore the concepts, theories and practices of creating and evaluating effective Marine Conservation Outreach. The course will cover the project life cycle from planning to implementation to evaluating effectiveness.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 674. From Gold to Glory: History and Ethics of Exploration. 3 Credit Hours.
This course will address changes in motivation and approaches to exploration with a focus on risk perception, physiological limitations, and social-cultural context, including how past colonial legacy is still influencing perceptions of the current generation of scientists, explorers, and the groups they interact with. Assignments will include critical readings of source materials and case studies of particular expeditions.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 676. Special Topics. 1-4 Credit Hours.
Lectures, research projects or directed readings in special topics related to marine affairs.

Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 677. Management and Conservation of Marine Ecosystems. 3 Credit Hours.
In this course students will learn how marine ecosystem management operates to achieve its objectives of sustainable use, optimization and allocation of resources. The primary focus is on how fisheries interactions with marine ecosystems are monitored, assessed and regulated. It examines how fisheries management achieves its objectives through different operational strategies. As the ecosystem-based approach to fisheries management requires seeing fisheries as integrated systems within the broader ecosystem, the course puts management in the context of impacts of all human activities not just fisheries. Particular attention is given to management of habitats, harvested and protected species. Impacts of marine transport, tourism, and mineral extraction are also considered albeit in less detail. The course includes individual chapter introductions to all components of ecosystem management and policy including, ecological sustainability, governance, social, economics and legal aspects.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 678. Special Topics. 1-4 Credit Hours.
Lectures, research projects or directed readings in special topics related to marine affairs.

Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 679. Special Topics. 1-4 Credit Hours.
Lectures, research projects or directed readings in special topics related to marine affairs.

Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 680. Special Topics. 1-4 Credit Hours.
Lectures, research projects or directed readings in special topics related to marine affairs.

Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 681. Special Topics. 1-3 Credit Hours.
Lectures, research projects, or directed readings in special topics related to Marine Ecosystems and Society.

Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.
MES 682. Special Topics. 1-3 Credit Hours.
Lectures, research projects, or directed readings in special topics related to Marine Ecosystems and Society.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MES 683. Special Topics. 1-3 Credit Hours.
Lectures, research projects, or directed readings in special topics related to Marine Ecosystems and Society.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MES 690. Acoustic Measurement of Nekton, Plankton and Underwater Habitat. 3 Credit Hours.
This is an introductory course on the theory, history and applications of acoustics to measure nekton, plankton and underwater habitat. It was designed for those students who wish to learn how to make quantitative measures of organisms and structure underwater. It is a prerequisite for MES 790, which focuses on data acquisition in the field and laboratory signal processing. This course is essential for students who need to make precise and accurate underwater measurements for their research.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 691. Maritime Archaeology Field Study. 3 Credit Hours.
This field-based course focuses on the acquisition of data from shipwreck sites and subsequent interpretation and analysis. Topics of study include shipwrecks from the 16th century to World War II era. Students will learn about historic maritime activity and be exposed to analyzing both the archaeological and historical record in examination of these sites. This course will be taught in collaboration with partners at the National Park Service and/or NOAA, and dives will take place in Biscayne National Park, Dry Tortugas National Park, or the Florida Keys National Marine Sanctuary. Students must be approved UM divers to take this course.
Components: FLD.
Grading: GRD.
Typically Offered: Summer.

MES 692. Archaeological Study of Submerged Pre-Contact Sites. 3 Credit Hours.
This is a field-based course with a focus on submerged pre-contact or prehistoric archaeological sites within North America, Latin America, and the Caribbean. Students will learn about the past human activity, settlement patterns, and habitation of various regions and sites, while conducting fieldwork. Focus will be placed on topics such as the peopling of the Americas over 13,500 years ago, human adaptation to environmental change, and the location and investigation of now-inundated coastal sites and submerged caverns and caves. Techniques and methods of data acquisition relevant to these site types will be taught, and students will receive hands-on experience in specific methodologies. Students must be approved UM divers to take this course.
Components: FLD.
Grading: GRD.
Typically Offered: Summer.

MES 693. Maritime Archaeology and the Conquest of Mexico. 3 Credit Hours.
This course will allow students to experience firsthand the archaeological and historical sites associated with the conquest of Mexico and to participate in archaeological fieldwork investigating maritime archaeological sites associated with this seminal historic event. Site-based learning experiences will include world-renowned museums and very significant archaeological sites, both prehistoric and historic, which will provide perspective on cultural transition and conflict over time within the prehistoric societies in Mesoamerica and the eventual collision of cultures and civilizations at the height of the Aztec empire and the advent of Spanish colonialism. The fieldwork portion of the course will take place in the town of Villa Rica de la Vera Cruz and will be conducted from a borderlands/landscape lens, incorporating both terrestrial and underwater efforts. Students will participate in the archaeological study of and search for ships scuttled by Hernán Cortés in 1519 and 1520.
Prerequisite: RSM 500 or RSM 600.
Components: FLD.
Grading: GRD.
Typically Offered: Summer.
MES 710. International Ocean Law and Governance. 3 Credit Hours.
This course shall track the history and development of international ocean law, from a series of bi-lateral and multi-lateral treaties, the evolving customary law framework, and coastal and maritime state claims to the codification and proliferation of international legal agreements addressing the panoply of ocean use and management issues. Applying a chronological approach, the course shall identify and discuss key developments in international ocean law, leading to the drafting of the Third United Nations Law of the Sea Convention (UNCLOS III). By evaluating the multifold themes addressed under the convention, the course will analyze the effects of convention in a post UNCLOS III world, especially in the fields of environmental protection, the management of marine fisheries and living resources, the allocation of seabed and subsoil resources, issues affecting the high seas, and polar regions.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 713. Marine Population Dynamics. 3 Credit Hours.
This course introduces students to the mathematical and statistical models that underpin the study of the fluctuations of marine populations. It focuses on the understanding and theory of the dynamics of marine harvested and protected species (marine mammals, sea turtles, and other endangered taxa). Particular attention is given to understanding these dynamics with the support of data related to marine fisheries. Whereas MES 646 focuses on basic processes (ageing, growth, reproduction, migration) MES 713 focuses on how understanding of these basic processes can help develop population models. The first half of MES 713 is devoted to the estimation of abundance from surveys, fishery data and mark recapture experiments. The second part of the course covers the study of population models that explain abundance fluctuations. The last part of the course covers forecasting models that can be used to provide advice to resource managers.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 714. Population Modeling and Management. 3 Credit Hours.
Mathematical and computer-intensive models of exploited populations fish, shell fish, marine mammals, and sea turtles. Stock production (surplus production), structured analytical yield (yield-per-recruit and age-size structured assessments), stock and recruitment, simulation modeling, adaptive control theory, risk assessments, and decision theoretic analyses are discussed. Techniques of management, concepts of resource allocation, and fishery management institutions with case studies are also included. Lecture and computer-based laboratory.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 715. Advanced Biometrics in Marine Science. 3 Credit Hours.
An introduction to advanced statistical analysis of multivariate empirical observations with primary emphasis on applications in the assessment and interpretation of the dynamics of marine populations and communities in marine biology, biomedical sciences, fisheries, and biological oceanography. Advanced methods in linear, multiple and nonlinear regression analysis, probability and estimation theory, multiple partial correlation, ANCOVA, GLIM, general additive models, nonlinear optimization, multivariate statistics (classification and ordination), and sampling techniques. Exploratory data analysis and modeling are emphasized using the software SAS, S-PLUS, and MATLAB.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MES 720. Coastal Law and Policy. 3 Credit Hours.
Course examines the authority of different levels and agencies of government to make decisions affecting the coastal zone. Course also explores the coastal problems of shoreline use and development, uses of water areas and the seabed, and the related questions of environmental protection.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MES 774. Advanced Studies in Marine Ecosystems and Society. 1-4 Credit Hours.
Supervised study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MES 790. Advanced Acoustic Measurement of Nekton, Plankton, and Underwater Habitat. 3 Credit Hours.
This is the second course in a series on the acoustic measurement of nekton, plankton and underwater habitat. This course will focus on the acquisition and processing of plankton, nekton and marine habitat data using sonar hydrophones. Students will also review and discuss the classic papers that have been published on this topic. This class was designed for those students who wish to learn how to make quantitative measures of organisms and underwater habitat structure for their research.
Prerequisite: MES 590 Or MES 690.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.
MES 805. MPS Internship. 1-6 Credit Hours.
The MPS internship is an approved, supervised internship project with an organization engaged in activities associated with the student's degree track. The internship results in a collaborative project, written report, and oral presentation on a topic approved by the student's advisory committee. Up to 6 credits are necessary for graduation.
Components: PRA.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.

MES 810. Master's Thesis. 1-6 Credit Hours.
The student working on his/her master's thesis enrolls for credit in most departments not to exceed six, as determined by his/her advisor. Credit is not awarded until the thesis has been accepted.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.

MES 820. Research in Residence. 1 Credit Hour.
Used to establish research in residence for the thesis for the master's degree after the student has enrolled for the permissible cumulative total in MAF 710 (usually six credits). Credit not granted. May be regarded as full time residence.
Components: THI.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MES 825. Continuous Registration--Master's Study. 1 Credit Hour.
To establish residence for non-thesis master's students who are preparing for major examinations. Credit not granted. Regarded as full time residence.
Components: THI.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MES 830. Doctoral Dissertation. 1-12 Credit Hours.
Required of all candidates for the Ph.D. The student will enroll for credit as determined by his/her advisor but not for less than a total of 12. Not more than 12 hours of MES 830 may be taken in a regular semester, nor more than six in a summer session. Where a student has passed his/her (a) qualifying examinations, and (b) is engaged in an assistantship, he/she may still take the maximum allowable credit stated above.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.