The Marine Geosciences (MGS) graduate program is focused on studying the geology, geophysics, and geochemistry of the earth system, beneath, within, and above the oceans. Students work closely with faculty at the forefront of research on earthquakes, volcanoes, plate tectonics, hydrothermal seafloor vents, and paleoclimate. MGS faculty and students also emphasize interdisciplinary study where geological phenomena interact with or are influenced by processes generally studied in other disciplines, such as ocean currents, climate, and biological evolution.

MGS research uses pioneering remote sensing techniques to assess the earth’s crustal movement and sedimentation in coastal zones. MGS degree programs are at the forefront of understanding carbonate deposit systems, and paleoclimate researchers are using stromatolites and reefs to learn more about past climate change by studying the interaction between biological and geological processes. Ocean observing systems, such as hydrological observatories, are playing prominently in research efforts as well.

Degree Programs

- **Post-Bachelor's Certificate** (p. 1)
 - Offered for working professionals who seek specialization in Applied Carbonate Geology.
 - Requires 16 course credit hours for successful completion.

- **Master of Science (M.S.)**
 - Requires 30 credit hours, including 24 course credit hours and 6 research credit hours.
 - Interdisciplinary studies with expertise in physics, chemistry, mathematics, and/or biology are encouraged.

- **Doctor of Philosophy (Ph.D.)** (p. 1)
 - Requires 60 credit hours, including a minimum of 30 course credit hours and a minimum of 12 research credit hours.
 - Interdisciplinary studies with expertise in physics, chemistry, mathematics, and/or biology are encouraged.

The undergraduate student wishing to prepare for graduate work in the marine geosciences must be well trained in the basic sciences. According to the special interests of the individual, the undergraduate major and minor should be in geology, physics, chemistry, and/or mathematics. Applicants must take the GRE, and those whose first language is not English must pass the Test of English as a Foreign Language (TOEFL) with a score of at least 550 (Paper-based) or 80 (IBT).

Post-Bachelor's Certificate Programs

Master of Science (M.S.) Programs

- M.S. in Marine Geosciences (MGS) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-geology-geophysics/marine-geology-geophysics-ms)

Doctor of Philosophy (Ph.D.) Programs

- Ph.D. in Marine Geosciences (MGS) (http://bulletin.miami.edu/graduate-academic-programs/marine-atmospheric-science/marine-geology-geophysics/marine-geology-geophysics-phd)

MGS 601. Oceanography I (Geological). 2 Credit Hours.
The first section of the core course curriculum designed as an integrated and multidisciplinary view of ocean processes, covering the major disciplines of marine science and their applications to the study of the marine environment. To be taken in sequence with Oceanography II - Physical (MPO 502), Oceanography III - Chemical (MAC 501), and Oceanography IV - Biological (MBF 502). This course is for non-MGG majors only.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MGS 611. Earth Surface Processes. 3 Credit Hours.
An introduction into the sedimentologic, geomorphic, biotic, and hydrologic processes on the Earth surface from the terrestrial to the marine environment and their resultant sedimentary product with the goal to be able to read the rock record and make interpretation on the depositional processes in each environment.

Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

MGS 613. Introductory Geochemistry. 3 Credit Hours.
Fundamentals of atomic structure and quantum mechanics applied to Chemistry. Topics include origin and distribution of the elements, chemical bonding and substitution, basic thermodynamics of solids, liquids, and gases. Applications of these concepts to such geochemical processes as magmatic differentiation, rock-water interactions, low temperature aqueous geochemistry, and the geochemical cycling of the elements is also included.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MGS 614. Geophysics. 3 Credit Hours.
Course topics include seismology, gravity, heat flow, thermal history, geomagnetism, plate tectonics, and their importance in understanding the Earth’s crust, mantle, and core.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.
MGS 619. Field Studies of Geobiology in Tropical Marine Environments. 3 Credit Hours.
Geobiology is an interdisciplinary field that explores interactions between the physical Earth and the biosphere. Biological processes are, for example, critical to the formation of carbonate sediments and sedimentary structures in shallow tropical marine environments. This class will conduct field studies to investigate geobiological processes involved in carbonate sedimentation, maximizing the learning process through a combination of field work, lectures and independent research.

Components: LEC.
Grading: GRD.
Typically Offered: Spring & Summer.

MGS 625. Applied Environmental Geophysics. 3 Credit Hours.
Application of subsurface geophysical tools to environmental problems. Course includes the theory and application of shallow refraction and reflection seismology, conducting field experiments and processing both marine and land seismic data, other marine survey techniques such as side-scan sonar surveying, potential field techniques (gravity, magnetics, EM), ground penetrating radar, and borehole geophysics.

Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 634. Hydrological Hazards. 3 Credit Hours.
This course will explore the causes, effects, and societal response to hydrological hazard.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 635. Geological Hazards. 3 Credit Hours.
This course will explore the hazards related to the dynamic solid Earth. We will look at the physics, causes and effects of earthquakes, volcanic eruptions and tsunamis, their societal impacts, and on measures available to reduce the disaster risks.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MGS 641. Field Evaluation of Fossil Platforms, Margins, and Basins. 2 Credit Hours.
Field investigation of classic rock sequences formed within ancient platform, margin, and basin environments. The use of ancient exposures as a guide to the interpretation of modern marine environments.

Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 650. Mathematical Methods for Geoscientists. 3 Credit Hours.
Background mathematics needed to solve problems in the geosciences. Applications in tectonics, geodynamics, structural geology, seismology, and hydrology. Topics include linear inverse problems, least squares, linear algebra, matrix theory, vectors, dimensional analysis, probability and scientific inference, continuum mechanics, transform and numerical methods to solve differential, and partial differential equations.

Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MGS 670. Continental Tectonics. 3 Credit Hours.
Reviews major research techniques used in the study of the structure and evolution of continental crust and topological discoveries, with an emphasis on the Neogene to Recent time. The course begins with brief introductions to the fields of structural geology, seismology, and geodesy as they relate to continental tectonics. New research in areas such as the rheology of the lithosphere, plate motion models, deformation of continental crust in plate boundary zones, oblique subduction, and earthquake hazard assessment are also discussed.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 679. Plate Tectonics. 3 Credit Hours.
The theory of plate tectonics, sea floor spreading, and continental drift. Mathematical description of plate motions, finite and instantaneous rotation poles, consequences of plate tectonics, mountain building, rifting, erosion, and recycling of continental materials are also discussed.

Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

MGS 680. Geological and Environmental Remote Sensing. 3 Credit Hours.
This one semester course will cover major remote sensing techniques used in the geological and environmental sciences. The course will begin with an introduction to the basic physics of remote sensing, followed by a review of major remote sensing techniques used in aircraft and satellite platforms, including IR and near IR, optical and microwave systems. We will then discuss specific terrestrial and coastal applications using a case history approach, including geologic, soil and biomass mapping, environmental monitoring, and natural hazard assessment. The course is aimed at graduate students and senior undergraduates with some background in math and physics. Grades are based on problems sets (a minimum of three), a mid-term test, and a report or lab exercise involving image processing, due at the end of the semester.

Components: LEC.
Grading: GRD.
Typically Offered: Spring.
MGS 681. Petroleum Geology. 4 Credit Hours.
Students will learn the basics of hydrocarbon generation, migration and entrapment using a variety of tools and real subsurface datasets. Participants should be comfortable with sedimentary geology, stratigraphy, structural geology. Some basic geophysics is helpful but not necessary. At the end of the course, students will be able to use ARCGIS and other software tools to build risk maps of hydrocarbon prospectively, assess exploration potential of an area and understand the basics of reserve estimation, prospect level risk assessment and ways to estimate yet-to-find volumes for a basin using a variety of statistical as well as geological techniques. The course stresses an understanding of practical applications of petroleum geochemistry, source rock and fluids characterization, burial history and oil and gas show evaluation to predict new accumulations and appraise discoveries. Basic principles of rock property analysis, coupled with an understanding of subsurface pressures, seals and ways to recognize hydrocarbons on electric logs are also covered. Lastly, seismic stratigraphy and plate tectonics are touched upon. A large for number of subsurface datasets are used and the opportunity exists to learn additional software packages for those interested. Many subsurface problems will involve small teams of students working together to make final presentations simulating real workplace discussions and processes.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MGS 682. Introduction to Seismology. 3 Credit Hours.
This class provides an approachable and concise introduction to seismic theory.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MGS 683. Scanning Electron Microscopy. 2 Credit Hours.
Theory and practical application of the SEM and the electron probe to research problems. Lectures and laboratory with emphasis on independent operation of the SEM, special preparation techniques, and interpretation of results are included. Course is designed to provide students with a broad and thorough background in scanning electron microscopy.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 684. Special Topics. 1-4 Credit Hours.
Lectures, research projects or directed readings in special topics related to Marine Geology and Geophysics.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 685. Special Topics. 1-4 Credit Hours.
Lectures, research projects or directed readings in special topics related to Marine Geology and Geophysics.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 686. Special Topics. 1-3 Credit Hours.
Lectures, research projects or directed readings in special topics related to Marine Geology and Geophysics
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MGS 687. Facies Succession of Great Bahama Bank. 2 Credit Hours.
To illustrate the vertical and horizontal variability of facies and rock properties incarbonate platforms and to illustrate the processes that create these variabilities. Bachelor degree or equivalent.
Components: FLD.
Grading: GRD.
Typically Offered: Summer.

MGS 688. Heterogeneity of a Windward Margin. 2 Credit Hours.
The seminars will illustrate the processes, facies relationships and dimensions along a high-energy platform margin with a special emphasis on the impact of sea-level fluctuations on the margin system. Bachelor degree or equivalent.
Components: FLD.
Grading: GRD.
Typically Offered: Summer.

MGS 691. Research Methods in Electron Microscopy. 2 Credit Hours.
This course will utilize the theory/methods students acquire in the introduction to EM course MGS 583/683 and focus on student research projects utilizing Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Backscattered Electron Imaging (BSE).
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MGS 701. Seminar in Marine Geosciences. 1 Credit Hour.
Oral presentation and discussion of research and special topics by students, faculty, and visiting scientists. Students receiving credit are required to present a seminar.
Components: LEC.
Grading: GRD.
Typically Offered: Fall & Spring.

MGS 720. Satellite Radar Interferometry in the Earth Sciences. 3 Credit Hours.
Spaceborne interferometric Synthetic Aperture Radar is an important technique for various disciplines in the Earth Sciences, such as geodesy, glaciology and hydrology. This course reviews the principles of radar, synthetic aperture radar of interferometric and differential radar interferometric techniques.
Components: LEC.
Grading: GRD.

MGS 722. Geophysical Inverse Theory. 3 Credit Hours.
This course covers the principles of geophysical inverse theory as applies to problems in the Earth Sciences. Inverse theory is a set of mathematical techniques used to obtain inferences about the Earth from physical measurements. The focus of this class will be on formulating and solving inverse problems, and understanding the non-uniqueness and resolution associated with inversions. The emphasis will be on geodetic data (obtained from GPS and InSAR measurements).
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 723. Geodynamics. 3 Credit Hours.
This course is a quantitative discussion of the physical properties of earth materials and dynamic processes in the solid Earth.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.
MGS 724. Seismic Interpretation of Carbonate Systems. 2 Credit Hours.
This course provides the students with the principles and workflow of interpretation of subsurface seismic data in carbonates.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 725. Petrophysics of Carbonates. 2 Credit Hours.
This course will provide an overview of carbonate rock physics principles and equations and introduce the modern geophysical tools that are used to measure these properties.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 726. Carbonate Diagenesis and Petrography. 2 Credit Hours.
This course will integrate thin section and hand sample description with geochemical principals and data. Students will examine rocks using petrographic and SEM methods and then analyze the same samples to establish paragenetic pathways. At the end of the class, students should be able to confidently use a petrographic microscope, apply staining methods for mineral identification, and use cathodolumiscence.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 727. Carbonate Depositional Systems. 2 Credit Hours.
The recognition of ancient carbonate depositional systems in the subsurface as recorded in core borings, thin sections, and geophysical logs.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 728. Advanced Seismology. 3 Credit Hours.
This is an advanced level course designed to involve students into seismological research.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 750. Stable Isotopes in Biogeochemical Processes. 3 Credit Hours.
Theory of stable isotope fractionation, methods of measurement, and application of results to geological, biological, and oceanographic processes. Hands-on experience in the stable isotope laboratory is provided utilizing a range of techniques. A project chosen either by the student or instructor is required. All students who wish to use the stable isotope facility should take this course. Lecture, 2 hours; laboratory, 3 hours. Prerequisite: Permission of instructor.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 762. Comparative Sedimentology. 3 Credit Hours.
The use of modern sediments to decipher processes of origin, accumulation, and early diagenesis as the basis for interpreting environments and architecture of ancient deposits in outcrop and in the subsurface. Evaluation of the sedimentary record of climate and sea level changes is included as well as the application of facies models for interpretation of seismic and log data.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 768. Radiogenic Isotope Geochemistry. 3 Credit Hours.
The use of isotopic methods in geology, geochemistry, and geophysics, including oceanography and meteorology. General laws governing isotopic effects in chemical and physical processes are discussed. Specific problems in dating, tracing, and paleotemperatures are also included.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 771. Diagenesis of Carbonate Sediments. 3 Credit Hours.
Application of geochemical, mineralogical, and petrological principles to the behavior of carbonate minerals in sediments. Physical and chemical conditions responsible for cementation, dolomitization, and aragonite-calcite phase transitions are emphasized. Types of depositional and diagenetic information which may be preserved in carbonate sediments. Laboratory studies of sediments are included.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 772. Basin Analysis and Seismic Interpretation. 3 Credit Hours.
The processes of basin formation and filling. The principles of seismic facies analysis, seismic sequence stratigraphy, and their applications in basin analysis, groundwater management, and exploration for hydrocarbons are discussed.
Components: LEC.
Grading: GRD.
Typically Offered: Spring.

MGS 776. Paleoclimatology. 3 Credit Hours.
Climatic variables and their effects on geological and biological processes. The development of the paleoclimatic record, modeling of present climate, and the extrapolation to past and future climates are discussed.
Components: LEC.
Grading: GRD.
Typically Offered: Fall.

MGS 777. Physical Volcanology. 3 Credit Hours.
Volcanology is the study of volcanoes of the Earth and planets. On Earth, volcanoes occur on land and under the sea. Eruptions vary in size, duration, and frequency, and in the composition of eruptive rocks and lavolites. Proximity to centers of population makes some of them extremely dangerous. This course covers the principles of physical volcanology, including introductory petrology, mineralogy, geology, magma physics, the fluid dynamics of magmas, and volcanic hazards. Course logistics: Lectures supplemented by homework. Homework will be designed to illustrate physical processes.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.
MGS 781. Advanced Studies. 1-4 Credit Hours.
Special study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 782. Advanced Studies. 1-4 Credit Hours.
Special study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 783. Advanced Studies. 1-4 Credit Hours.
Special study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 784. Advanced Studies. 1-3 Credit Hours.
Special study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MGS 785. Advanced Studies. 1-3 Credit Hours.
Special study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MGS 786. Advanced Studies. 1-3 Credit Hours.
Special study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MGS 787. Advanced Studies. 1-3 Credit Hours.
Special study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MGS 788. Advanced Studies. 1-3 Credit Hours.
Special study in areas of special interest to graduate students.
Components: LEC.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MGS 800. Practical Training and Internship. 1-6 Credit Hours.
Supervised internship or off-campus employment for students pursuing
the M.A., M.S., or Ph.D. degree. Consists of work related to research in
progress.
Components: THI.
Grading: GRD.
Typically Offered: Offered by Announcement Only.

MGS 805. Special Report. 1-6 Credit Hours.
Supervised project for students pursuing the Master of Arts degree in
Marine Studies. Course consists of a research paper, researched, and
written on a topic approved by the student’s advisory committee, and
presented as a seminar to the student’s division. Six credits are required
for graduation.
Components: THI.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MGS 810. Master's Thesis. 1-6 Credit Hours.
The student working on his/her master's thesis enrolls for credit, in most
departments not to exceed six, as determined by his/her advisor. Credit is
not awarded until the thesis has been accepted.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.

MGS 820. Research in Residence. 1 Credit Hour.
Used to establish research in residence for the thesis for the master's
degree after the student has enrolled for the permissible cumulative total
in MGG 710 (usually six credits). Credit not granted. May be regarded as
full time residence.
Components: THI.
Grading: GRD.
Typically Offered: Fall, Spring, & Summer.

MGS 830. Doctoral Dissertation. 1-12 Credit Hours.
Required of all candidates for the Ph.D. The student will enroll for credit
as determined by his/her advisor but not for less than a total of 12. Not
more than 12 hours of MGG 730 may be taken in a regular semester, nor
more than six in a summer session. Where a student has passed his/her
(a) qualifying examinations, and (b) is engaged in an assistantship, he/
she may still take the maximum allowable credit stated above.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.

MGS 850. Research in Residence. 1 Credit Hour.
Used to establish research in residence for the Ph.D., after the student
has been enrolled for the permissible cumulative total in appropriate
doctoral research. Credit not granted. May be regarded as full-time
residence as determined by the Dean of the Graduate School.
Components: THI.
Grading: SUS.
Typically Offered: Fall, Spring, & Summer.