B.S./M.S. IN BIOMEDICAL ENGINEERING - PREMED CONCENTRATION

• Juniors from any of the four BME Concentrations who have maintained at least a 3.0 CGPA have the option to apply for admission to the combined BS-MS in Biomedical Engineering program.

• Those who are accepted into this accelerated program must maintain at least a 3.0 CGPA and a minimum of a 3.0 GPA for the final 30 credit hours to meet the requirements of the Graduate School.

• The participants complete BME 705 in lieu of BME 402/BME 403.

• Up to 6 credit hours of Technical electives earned during the fourth year can be counted toward the 30 credit hours required for the MS degree. If their schedule allows, students may be able to complete an additional 3 credits of graduate classes during their fourth year.

• Students must be registered for a minimum of 12 undergraduate credit hours per semester in their fourth year.

• Students can register for a maximum of 6 graduate credit hours in each semester of their fourth year.

• If a student needs to withdraw from the BS/MS BME program then all the requirements for the specific BS BME Concentration must be completed for graduation with the BS BME degree.

Curriculum Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 111</td>
<td>Introduction to Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 303</td>
<td>Cell Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 401</td>
<td>Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
<td>4</td>
</tr>
<tr>
<td>BME 450</td>
<td>Biomedical Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>BME 470</td>
<td>Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 480</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 512</td>
<td>Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BME 705</td>
<td>Senior Design Project</td>
<td>3</td>
</tr>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Bioscience Elective</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Technical Elective</td>
<td>0-6</td>
<td></td>
</tr>
<tr>
<td>Technical Elective Lab</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Technical or Science Lab Elective</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Graduate Level Courses</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Math and Science Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTH 151</td>
<td>Calculus I for Engineers</td>
<td>5</td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>MTH 211</td>
<td>Calculus III</td>
<td>3</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BIL 160</td>
<td>Evolution and Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>BIL 161</td>
<td>Evolution and Biodiversity Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>CHM 111</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
</tbody>
</table>
Suggested Plan of Study - Premed Concentration

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 111</td>
<td>Introduction to Engineering I</td>
<td>3</td>
</tr>
<tr>
<td>ENG 105</td>
<td>English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MTH 151</td>
<td>Calculus I for Engineers</td>
<td>5</td>
</tr>
<tr>
<td>PHY 221</td>
<td>University Physics I</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate ¹</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Credit Hours</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 112</td>
<td>Introduction to Biomedical Engineering</td>
<td>2</td>
</tr>
<tr>
<td>CHM 111</td>
<td>Principles of Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>ENG 107</td>
<td>English Composition II: Science and Technology</td>
<td>3</td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 222</td>
<td>University Physics II</td>
<td>3</td>
</tr>
<tr>
<td>PHY 224</td>
<td>University Physics II Lab</td>
<td>1</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Sophomore Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIL 150</td>
<td>General Biology</td>
<td>4</td>
</tr>
<tr>
<td>BIL 151</td>
<td>General Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
<tr>
<td>CHM 112</td>
<td>Principles of Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHM 114</td>
<td>Chemistry Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>ECE 201</td>
<td>Electrical Circuit Theory</td>
<td>3</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
<tr>
<td>Credit Hours</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIL 160</td>
<td>Evolution and Biodiversity</td>
<td>4</td>
</tr>
<tr>
<td>BIL 161</td>
<td>Evolution and Biodiversity Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>BME 265</td>
<td>Medical Systems Physiology</td>
<td>3</td>
</tr>
<tr>
<td>BME 266</td>
<td>Human Physiology Laboratory (Human Physiology Lab)</td>
<td>1</td>
</tr>
<tr>
<td>BME 211</td>
<td>Introduction to Programming for Biomedical Engineers</td>
<td>3</td>
</tr>
</tbody>
</table>
B.S./M.S. in Biomedical Engineering - Premed Concentration

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 201</td>
<td>Organic Chemistry I (Lecture)</td>
<td>3</td>
</tr>
<tr>
<td>PHY 223</td>
<td>University Physics III</td>
<td>3</td>
</tr>
<tr>
<td>PHY 225</td>
<td>University Physics III Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>19</td>
</tr>
<tr>
<td>Junior Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHM 201</td>
<td>Organic Chemistry I (Lecture)</td>
<td>3</td>
</tr>
<tr>
<td>PHY 223</td>
<td>University Physics III</td>
<td>3</td>
</tr>
<tr>
<td>PHY 225</td>
<td>University Physics III Lab</td>
<td>1</td>
</tr>
<tr>
<td>BME 303</td>
<td>Cell Engineering Lab</td>
<td>1</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 335</td>
<td>Biomaterials</td>
<td>3</td>
</tr>
<tr>
<td>BME 401</td>
<td>Biomedical Design</td>
<td>3</td>
</tr>
<tr>
<td>CHM 205</td>
<td>Chemical Dynamics Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>17</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 312</td>
<td>Biomedical Statistics and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 330</td>
<td>Foundations of Medical Imaging</td>
<td>3</td>
</tr>
<tr>
<td>BME 375</td>
<td>Fundamentals of Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 440</td>
<td>Biomedical Measurements</td>
<td>4.00</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>16</td>
</tr>
<tr>
<td>Senior Year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 450</td>
<td>Biomedical Transport Phenomena</td>
<td>3</td>
</tr>
<tr>
<td>BME 470</td>
<td>Biomedical Signal Analysis</td>
<td>3</td>
</tr>
<tr>
<td>BME 512</td>
<td>Regulatory Control of Biomedical Devices</td>
<td>3</td>
</tr>
<tr>
<td>BME 705</td>
<td>Senior Design Project</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective Lab</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Technical or Science Lab Elective</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Undergraduate Elective</td>
<td></td>
<td>0-3</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective (Graduate)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>20-23</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Bioscience Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BME 480</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PS/HA Cognate</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Undergraduate Elective</td>
<td></td>
<td>0-3</td>
</tr>
<tr>
<td>Technical Elective (Graduate)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective (Graduate)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>18-21</td>
</tr>
<tr>
<td>Fifth Year (Graduate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME 706</td>
<td>Master’s Project</td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>9</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Credit Hours</td>
<td>9</td>
</tr>
</tbody>
</table>
Students must complete a minimum of 1 PS cognate and 1 HA cognate to be selected from the list of available cognates (http://www.miami.edu/index.php/registrar/cognates/). Each cognate should be a minimum of 3 courses (9 credit hours). Students in the Premed Concentration are highly encouraged to choose cognates that include PSY 110 and SOC 101.

Advanced Bioscience Elective is to be chosen from BIL 250, BIL 255, BIL 268, CHM 202, or BMB 402. Students should verify admission requirements of their medical school of interest to verify Adv. Bioscience requirements, e.g. organic chemistry II, biochemistry, or both.

Technical or Science Elective Lab is selected from BME 506, BME 507, BME 566 or BME 395 or from a science lab complementing the Adv Bioscience Elective (e.g., CHM or BIL lab).

Technical Elective Lab is selected from BME 506, BME 507, BME 566 or BME 395.

All Technical Electives are taken as graduate courses. They are graduate-level courses (600 level and above) chosen from the BME course offerings with the approval of the advisor. Non-BME courses need to be approved by the advisor and the chairperson.

The undergraduate elective is any undergraduate level course with a number of credit hours sufficient to ensure that the student is enrolled for a total of 12 undergraduate credit hours during each semester of the senior year. The undergraduate elective can be any undergraduate class, but students are encouraged to select an engineering or science course.

† Students planning on taking the MCAT should take BMB 401 as their first Adv. Bioscience Elective.