B.S. IN COMPUTER ENGINEERING / M.S. IN BIOMEDICAL ENGINEERING

Overview

The College of Engineering offers a dual-degree program that culminates with students receiving a Bachelor of Science in Computer Engineering and a Master of Science in Biomedical Engineering concurrently. This program is available only to qualified students enrolled in the undergraduate program in Computer Engineering at the University of Miami. This is a structured and integrated program totaling 153 credit hours.

Note the following:

- At least 30 credit hours must be at the graduate (600 or 700) level.
- Interested Computer Engineering Juniors with a cumulative GPA above 3.0 may declare their intent to participate by submitting an official application to the Graduate School for admission into the M.S.B.M.E. portion of the program.
- A student wishing to drop out of the five-year program without the M.S.B.M.E. degree could receive the B.S.C.E. degree after completing all its requirements, including the senior design project.
- To qualify for the M.S.B.M.E. degree, students must meet all the pertinent Graduate School requirements, including a minimum of 3.0 GPA in the 30 credit hours applied towards the M.S.B.M.E. degree.
- The student is awarded both the B.S.C.E. and the M.S.B.M.E. degrees after the requirements for both degrees are satisfied.
- Up to 6 credit hours of technical electives earned during the fourth year can be counted toward the 30 credit hours required for the M.S. degree. If their schedule allows, students may be able to complete an additional 6 credits of graduate classes during their fourth year.
- Students must be registered for a minimum of 12 undergraduate credit hours per semester in their fourth year.
- Students can register for a maximum of 6 graduate credit hours in each semester of their fourth year.

Admission Requirements

The dual B.S. CE/M.S. BME program is available only to qualified undergraduate students enrolled in the Department of Electrical and Computer Engineering. Students must have undergraduate student status and a cumulative G.P.A. of at least 3.0 at the time of application.

Qualified students are strongly advised to apply to the dual degree program as early as possible in their junior year to facilitate academic advising and course selection in the second semester of their junior year. Students opting for an M.S. degree in a discipline different from their B.S. degree may need to take some prerequisite coursework. Before submitting an application, students should discuss the program and possibility of entering with an academic adviser.

This program is intended for exceptional students to acquire both a Bachelor of Science and a Master of Science degree simultaneously, in five years rather than the 4 plus 2 years (approximately) it normally requires.
Curriculum Requirements: B.S. Computer Engineering / M.S. Biomedical Engineering

Code	Title	Credit Hours
BS IN COMPUTER ENGINEERING REQUIREMENTS (123 CREDIT HOURS)		
Engineering Courses		
EGN 123	Computing and Digital Solutions for the future	3
ECE 112	Introduction to Engineering II	2
ECE 118	Introduction to Programming	3
ECE 201	Electrical Circuit Theory	3
ECE 202	Electronics I	3
ECE 203	Electrical Circuits Laboratory	1
ECE 211	Logic Design	3
ECE 212	Processors: Hardware, Software, and Interfacing	3
ECE 218	Data Structures	3
ECE 315	Digital Design Laboratory	1
ECE 316	Structured Digital Design	1
ECE 318	Algorithms	3
ECE 322	Systems Programming	3
ECE 414	Computer Organization and Design	3
ECE 417	Embedded Microprocessor System Design	3

Suggested Plan of Study: B.S. Computer Engineering / M.S. Biomedical Engineering

Freshman Year

EGN 123	Computing and Digital Solutions for the future	3
ECE 118	Introduction to Programming	3

WRS 105	First-Year Writing I	3
MTH 151	Calculus I for Engineers	5
	Credit Hours	14
Spring		
ECE 112	Introduction to Engineering II	2
ECE 218	Data Structures	3
WRS 107	First-Year Writing II: STEM	3
MTH 162	Calculus II	4
PHY 221	University Physics I	3
	Credit Hours	15
Sophomore Year		
Fall		
ECE 211	Logic Design	3
ECE 318	Algorithms	3
MTH 210	Introduction to Linear Algebra	3
PHY 222 or 223	University Physics II or University Physics III	3
PHY 224 or 225	University Physics II Lab or University Physics III Lab	1
Arts and Humanities Cognate ${ }^{1}$		3
	Credit Hours	16
Spring		
ECE 201	Electrical Circuit Theory	3
ECE 212	Processors: Hardware, Software, and Interfacing	3
ECE 315	Digital Design Laboratory	1
ECE 310	Introduction to Engineering Probability	3
MTH 309	Discrete Mathematics I	3
People and Society Cognate ${ }^{1}$		
	Credit Hours	16
Junior Year		
Fall		
ECE 202	Electronics I	3
ECE 203	Electrical Circuits Laboratory	1
ECE 316	Structured Digital Design	1
ECE 322	Systems Programming	3
ECE 414	Computer Organization and Design	3
Basic Science Elective ${ }^{1}$		3
Arts and Humanities Cognate ${ }^{1}$		3
	Credit Hours	17
Spring		
ECE 302	Electronics II	3
ECE 454	Digital System Design and Testing	3
ECE 455	Design-for-Testability Laboratory	1
ECE 467	Database Design and Management	3
MTH 311	Introduction to Ordinary Differential Equations	3
Basic Science Elective ${ }^{1}$		3
Basic Science Lab Elective ${ }^{1}$		1
	Credit Hours	17
Senior Year		
ECE 206	Circuits, Signals, and Systems	3
ECE 303	Electronics Laboratory	1

ECE 417	Embedded Microprocessor System Design	3
ECE 481	Senior Project I ${ }^{2}$	1
Technical elective taken as graduate course ${ }^{3}$		3
Graduate Course ${ }^{3}$		3
Arts and Humanities Cognate ${ }^{1}$		3
People and Society Cognate ${ }^{1}$		3
	Credit Hours	20
Spring		
ECE 421	Computer Operating Systems	3
ECE 482	Senior Project II	2
CE Technical Elective ${ }^{2}$		3
CE Technical Elective ${ }^{2}$		3
Graduate Course ${ }^{3}$		3
Technical elective taken as graduate course ${ }^{3}$		3
People and Society Cognate ${ }^{1}$		3
	Credit Hours	20
Fifth Year		
Fall		
BME 707	Master's Project I	1
BME 612	Regulatory Control of Biomedical Devices	3
BME 602	Human Physiology for Engineers	3
Graduate Elective		3
	Credit Hours	10
Spring		
BME 603	Neurophysiology for Engineers	3
BME 708	Master's Project II	2
Graduate Elective		3
	Credit Hours	8
	Total Credit Hours	153

[^0]
[^0]: Humanities and Arts (HA) Cognates and the People and Society (PS) Cognates can be selected from the appropriate University List. See the department electives page for a detailed list of available options.
 Graduate courses should be selected with the assistance of the Graduate Program Coordinator in Biomedical Engineering

