PH.D. IN MARINE GEOSCIENCES

Overview
The Marine Geosciences (MGS) graduate program is focused on studying the geology, geophysics, and geochemistry of the Earth system. The MGS Ph.D. degree is at the forefront of understanding carbonate depositional systems, modern and ancient reefs, and deep-sea sediments to learn more about past environmental change. Students work closely with faculty at the forefront of research on sedimentary systems, earthquakes, volcanoes, plate tectonics, and past and present climate.

Admission Requirements
The undergraduate student wishing to prepare for graduate work in the marine geosciences must be well trained in the basic sciences. The GRE score is not required for admission. You may optionally submit your GRE score, but not all faculty will consider this information. Individual faculty members may consider GRE scores as part of a holistic evaluation of the candidates. Applicants and whose first language is not English must pass the Test of English as a Foreign Language (TOEFL) with a score of at least 550. According to the special interests of the individual, the undergraduate major and minor should be in geology, physics, chemistry, and/or mathematics. All application requirements are available here (https://graduate.rsmas.miami.edu/admissions/application-information/).

Curriculum Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGS Ph.D. degree requires 60 total credits.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Course Requirements

- All MGS students must complete two of the following courses:
 - MGS 611 Earth Surface Processes
 - MGS 613 Introductory Geochemistry
 - MGS 614 Geophysics

Electives

- MGS 830 Doctoral Dissertation

- 24

Dissertation Research

- 30

Required Examinations

- Comprehensive Examination
- Qualifying Examination

Additional Requirements

- RSM 700 Research Ethics
- MGS Seminar
- MGS 701 Seminar in Marine Geosciences
- THE GEOTOPICS Lecture Series
- Educational Training Program (TA)

- RSM 771 Educational Training 1
- RSM 772 Educational Training 2
- RSM 773 Educational Training 3

Total Credit Hours

- 60

1. Minimum of 30 course credits and 12 dissertation credits.
2. In addition to fulfilling the general course requirements, all MGS students must complete any two courses in the MGS 610 Series: MGS 611, MGS 613, MGS 614.
 - MGS 771 may substitute for MGS 613.
 - MGS 728 or MGS 723 may substitute MGS 614.
3. The intent of these course requirements is to ensure preparation across the range of subfields within MGS with particular focus on the subfields most relevant to the student's Ph.D. focus (e.g., near-surface or solid Earth science, as determined by the student's advisor). The requirements may be waived by permission of the MGS Program Academic Committee.
4. If a student does not follow the above requirements and performs poorly in one of these subfields on the comprehensive exam, it may trigger a requirement to enroll in the respective course as a condition for further advancement in the MGS program.
All students who enroll in the MGS academic program starting in the Fall semester are required to take a comprehensive examination by the end of their second semester. Students who enroll in the Spring semester may be advised to take the comprehensive exam by the end of the year, no later than the beginning of the following Spring semester.

The purpose of the comprehensive examination is to evaluate the student’s understanding of fundamental principles, reasoning skills, and to determine if any basic deficiencies are present in the student’s background after two semesters of classes.

The examination will consist of a written part, which usually lasts about 6-8 hours, and an oral part, which lasts about 1 hour. The results of the written portion of the exam and performance of the oral exam determine the grade given by the examining board.

For a Ph.D. student, a grade of either **PASS** or **FAIL** is given.

- A **PASS** indicates that the student may proceed with additional course work, research proposal development, and preparation to take the qualifying examination.
- Failure of the exam will require the student to retake the exam at a time to be determined by the Exam Committee and the MGS Academic Committee. This retake is usually scheduled no later than the end of the following semester. If failure occurs on the second attempt, the student can be dismissed from the MGS program.

The qualifying examination should be taken by the end of the third year. The scheduling of the exam should be discussed with the Committee Chairperson and Dissertation Committee. A completed dissertation proposal demonstrating the ability to formulate and test a hypothesis must be submitted at least two weeks before the exam.

The purpose of the exam is to determine knowledge of (a) general principles of geology, geochemistry, and geophysics, (b) knowledge of the student’s individual specialty, and (c) peripheral and supporting disciplines.

The Dissertation Committee administers a written examination on the subjects outlined above. An oral examination may follow the written exam if necessary, to clarify answers, as judged by the Dissertation Committee.

Upon satisfactory completion of the qualifying exam, the student enters into candidacy for the Ph.D., provided all other requirements have been met.

If the qualifying exam is failed, the student may, at the discretion of the Dissertation Committee, be allowed one opportunity to be re-examined, but in this case no later than the end of the following semester.

No “partial passes” of the qualifying exam are allowed.

All MGS students are required to register for MGS 701 at least once and attend all meetings of the course throughout their tenure in the MGS program.

- Students are required to give presentations and actively participate in the course.

All MGS students are expected to attend the department weekly seminar THE GEOTOPICS.

- The diverse lecture series presents recent and ongoing research by RSMAS faculty and visiting scientists. These presentations help provide a broad, well-rounded view of research topics in the Earth sciences.

Ph.D. students are expected to be a Teaching Assistant (TA) for two courses while pursuing their degree.

- The mandatory TA program will include training of new TAs, evaluation of their performance, and recognition of excellence. The goal is to make the experience as valuable as possible for the TA, the faculty, and the students taking our courses.
- A training session and two teaching opportunities are offered as courses in educational training (RSM 771, RSM 772, RSM 773). Students will be registered accordingly.
- Specific requirements for TAs are outlined in the RSMAS Student Handbook.

Sample Plan of Study

<table>
<thead>
<tr>
<th>Year One</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>MGS 611</td>
<td>Earth Surface Processes</td>
</tr>
<tr>
<td>MGS 614 or 723</td>
<td>Geophysics or Geodynamics</td>
</tr>
<tr>
<td>Approved Elective</td>
<td></td>
</tr>
<tr>
<td>RSM 700</td>
<td>Research Ethics</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>MGS 613 or 771</td>
<td>Introductory Geochemistry or Diagenesis of Carbonate Sediments</td>
</tr>
<tr>
<td>MGS 830</td>
<td>Doctoral Dissertation</td>
</tr>
<tr>
<td>MGS 701</td>
<td>Seminar in Marine Geosciences</td>
</tr>
<tr>
<td>Approved Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
</tr>
<tr>
<td>MGS 830</td>
<td>Doctoral Dissertation</td>
</tr>
<tr>
<td>Approved Elective</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Year Two

Fall
- MGS 830 Doctoral Dissertation 1
- Approved Elective 3

Spring
- MGS 830 Doctoral Dissertation 1
- Approved Elective 3

Summer
- MGS 830 Doctoral Dissertation 4

Year Three

Fall
- MGS 830 Doctoral Dissertation 1
- Approved Elective 4
- RSM 771 Educational Training 1 0
- RSM 772 Educational Training 2 0

Spring
- MGS 830 Doctoral Dissertation 1
- Approved Elective 3
- RSM 773 Educational Training 3 0

Summer
- MGS 830 Doctoral Dissertation 4

Year Four

Fall
- MGS 830 Doctoral Dissertation 4

Spring
- MGS 830 Doctoral Dissertation 4

Summer
- MGS 830 Doctoral Dissertation 4

Year Five

Fall
- MGS 830 Doctoral Dissertation 4

Spring
- MGS 830 Doctoral Dissertation 4

Summer
- MGS 830 Doctoral Dissertation 4

Total Credit Hours
- 70

Mission

The mission of the MGS Ph.D. program is to educate and train students to become the next generation of scientists conducting research in and teaching geology and geophysics, geochemistry, and environmental geosciences. The program emphasizes coursework during the first year, then
Ph.D. in Marine Geosciences

development of and independent conduct of original research that leads to preparation of peer-reviewed publications and a publicly defended Ph.D. dissertation.

Goals
To educate and train students to become the next generation of scientists conducting research and education in the areas of marine geology and geophysics, geochemistry, and environmental geosciences. The goal is to equip our students with the tools to apply their knowledge in either professional or academic careers, emphasizing on the latter.

Student Learning Outcomes

• Students in the MGS Ph.D. program will demonstrate a broad comprehension of marine and Earth science, and then use this knowledge to develop an independent scientific research topic of sufficient quality and originality to lead to a Ph.D. dissertation.

• Each student will prepare an original Ph.D. dissertation that demonstrates his/her ability to critically evaluate scientific literature, comprehend previous knowledge on a topic, formulate testable hypotheses, and independently use available data and tools to produce a significant original contribution on the topic.

• Students will demonstrate good oral communication skills and be able to effectively communicate and defend their scientific findings to a peer audience.