B.S.M.A.S IN MARINE SCIENCE / COMPUTER SCIENCE

Marine Science/Computer Science

The Marine Science/Computer Science degree is a Bachelor of Science degree (BSMAS) that is designed to give students a strong background in ocean modeling and computer science, providing the skills and expertise required for research in applied aspects of ocean science and management.

Undergraduate students are encouraged to work with the faculty and are able to earn course credit by conducting independent research under the supervision of leading scientists in their field. Research at UM focuses on development of algorithms for data capture, visualization and analysis, model development, instrumentation programming and remote sensing applications.

The Bachelor of Science double major in Marine Science/Computer Science prepares students for admission to graduate programs and for careers in teaching and research as well as for technical careers in government and private industries concerned with the oceans.

Curriculum Requirements

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSC 111</td>
<td>Introduction to Marine Science</td>
<td>3</td>
</tr>
<tr>
<td>MSC 112</td>
<td>Introduction to Marine Science Lab</td>
<td>1</td>
</tr>
<tr>
<td>MSC 215</td>
<td>Chemical Oceanography</td>
<td>3</td>
</tr>
<tr>
<td>MSC 216</td>
<td>Chemical Oceanography Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>MBE 230</td>
<td>Introduction to Marine Biology</td>
<td>3</td>
</tr>
<tr>
<td>MSC 301</td>
<td>Introduction to Physical Oceanography</td>
<td>1</td>
</tr>
<tr>
<td>MBE 232</td>
<td>Introduction to Marine Biology Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>or MSC 302</td>
<td>Introduction to Physical Oceanography Lab</td>
<td></td>
</tr>
<tr>
<td>MSC 321</td>
<td>Scientific Computing in Marine and Atmospheric Sciences</td>
<td>3</td>
</tr>
<tr>
<td>Select 9 credit hours of approved Rosenstiel School electives within ATM, GSC, MBE, MSC, OCE or RSM courses</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Other Required Courses

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIL 150 & BIL 151</td>
<td>General Biology and General Biology Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>CHM 121</td>
<td>Principles of Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CHM 113</td>
<td>Chemistry Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>CSC 120</td>
<td>Computer Programming I</td>
<td>4</td>
</tr>
<tr>
<td>CSC 220</td>
<td>Computer Programming II</td>
<td>4</td>
</tr>
<tr>
<td>CSC 314</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CSC 322</td>
<td>System Programming</td>
<td>3</td>
</tr>
<tr>
<td>CSC 431</td>
<td>Introduction to Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>or CSC 317</td>
<td>Data Structures and Algorithm Analysis</td>
<td></td>
</tr>
<tr>
<td>Select 6 credit hours of approved electives, as described for Computer Science majors</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>WRS 105</td>
<td>First-Year Writing I</td>
<td>3</td>
</tr>
<tr>
<td>WRS 107</td>
<td>First-Year Writing II: STEM</td>
<td>3</td>
</tr>
<tr>
<td>or WRS 106</td>
<td>First-Year Writing II</td>
<td></td>
</tr>
<tr>
<td>or ENG 106</td>
<td>Writing About Literature and Culture</td>
<td></td>
</tr>
<tr>
<td>Select one of the following:</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>GSC 110</td>
<td>The Earth System</td>
<td></td>
</tr>
<tr>
<td>GSC 111</td>
<td>Earth System History</td>
<td></td>
</tr>
<tr>
<td>MSC 424</td>
<td>Origin and Geology of the Galapagos Islands.</td>
<td></td>
</tr>
<tr>
<td>MTH 161</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>or MTH 171</td>
<td>Calculus I</td>
<td></td>
</tr>
<tr>
<td>MTH 162</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>or MTH 172</td>
<td>Calculus II</td>
<td></td>
</tr>
<tr>
<td>MTH 210</td>
<td>Introduction to Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>MTH 309</td>
<td>Discrete Mathematics I</td>
<td>3</td>
</tr>
<tr>
<td>MTH 311</td>
<td>Introduction to Ordinary Differential Equations</td>
<td>3</td>
</tr>
</tbody>
</table>
MSC 204 Environmental Statistics 3
or MTH 224 Introduction to Probability and Statistics

Select one of the following options: 10
Option 1:
- PHY 201 University Physics I for the Sciences
- PHY 106 College Physics Laboratory I
- PHY 202 University Physics II for the Sciences
- PHY 108 College Physics Laboratory II

Option 2:
- PHY 221 University Physics I
- PHY 222 University Physics II
- PHY 223 University Physics III
- PHY 224 University Physics II Lab
 or PHY 225 University Physics III Lab

Electives
Arts and Humanities Cognate Courses 9
People and Society Cognate Courses 9
300+ Level Elective 3
Total Credit Hours 120-121

1 At least 3 of which must be at the 300-level or higher. MSC 204 and MSC 425 do not satisfy the Rosenstiel School elective requirement. ATM courses, GSC courses, and courses from other Schools are allowed only if taken from an approved list (https://undergraduate.rsmas.miami.edu/academics/majors/marine-science-dual-major-programs/).
2 Principles of Chemistry must be passed with a grade of "C-" or higher.
3 Calculus I and II must be passed with a grade of "C-" or higher.
4 Calculus II fulfills the Quantitative Skills Requirement.

Suggested Plan of Study

Freshman Year

Fall
- MSC 111 Introduction to Marine Science 3
- MSC 112 Introduction to Marine Science Lab 1
- BIL 150 General Biology 4
- BIL 151 General Biology Laboratory 1
- WRS 105 First-Year Writing I 3
- MTH 161 Calculus I 4
- Credit Hours 16

Spring
- CSC 120 Computer Programming I 4
- CHM 121 Principles of Chemistry 4
- CHM 113 Chemistry Laboratory I 1
- WRS 107 First-Year Writing II: STEM 3
- MTH 162 Calculus II 4
- Credit Hours 16

Sophomore Year

Fall
- MSC 215 Chemical Oceanography 3
- MSC 216 Chemical Oceanography Laboratory 1
- CSC 220 Computer Programming II 4
- PHY 201 University Physics I for the Sciences 4
- PHY 106 College Physics Laboratory I 1
- Credit Hours 13
Spring
- MBE 230: Introduction to Marine Biology (3)
- CSC 314: Computer Organization and Architecture (3)
- MTH 311: Introduction to Ordinary Differential Equations (3)
- PHY 202: University Physics II for the Sciences (4)
- PHY 108: College Physics Laboratory II (1)
- Elective #1 (3)

Junior Year
Fall
- MSC 301: Introduction to Physical Oceanography (3)
- CSC Course (3)
- MTH 210: Introduction to Linear Algebra (3)
- MTH 309: Discrete Mathematics I (3)
- Elective #2 (3)

Credit Hours

15

Spring
- MSC 302: Introduction to Physical Oceanography Lab \(^1\) (1)
- MSC 321: Scientific Computing in Marine and Atmospheric Sciences (3)
- MSC Course (3)
- CSC 317: Data Structures and Algorithm Analysis (3)
- CSC 322: System Programming (3)
- MSC 204: Environmental Statistics (3)

Credit Hours

16

Senior Year
Fall
- MSC Course (3)
- CSC Course (3)
- 300 level or higher elective (3)
- Elective #3 (3)
- Elective #4 (3)

Credit Hours

15

Spring
- MSC Course (3)
- GSC 111: Earth System History (4)
- Elective #5 (3)
- Elective #6 (3)

Credit Hours

13

Total Credit Hours

121

* 6 elective courses must include:
 - 3 Arts and Humanities Cognate courses
 - 3 People and Society Cognate courses

\(^1\) Students must take one laboratory from MBE 232 or MSC 302.

Mission

The mission of the Rosenstiel School of Marine, Atmospheric, and Earth Science is to deepen our collective knowledge of our planet through cutting-edge scientific research on the oceans, atmosphere, geology, biota, and the human dimension, while training the next generation of scientists. We transfer the knowledge gained to our students, the national and international scientific community, and to policymakers and the public.

The educational mission of the BS degree in Marine Science at the University of Miami is to graduate students with the ability and desire to integrate knowledge of marine science into their future careers.
Goals

Students completing this double major will be able to master a broad set of fundamental scientific knowledge in Marine Science and Computer Science, acquire valuable technical skills and learn how to apply this knowledge to real-world problems, in a time of rapidly increasing use of computational resources and methods in science and industry. The program will provide the rigor, flexibility, depth and integration to enable students to:

- Design and pursue their course of study that meets requirements of a double major in Marine Science and Computer Science.
- Learn from the diverse and outstanding group of professors and researchers who are experts in their fields and have active research programs.
- Undertake active research experiences, which will allow them to gain a strong understanding of the scientific process and provide them with a set of valuable experimental and computational skills.
- Prepare themselves for graduate school and for successful careers in public and private industries.

Student Learning Outcomes

- Students will demonstrate an ability to communicate effectively.
- Students will develop analytical and quantitative skills to allow critical data analysis.
- Students will be able to do carry out supervised research in the field of marine science.